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1 Introduction 

This literature review addresses sediment transport across the inner por- 
tion of the continental shelf, also referred to as the shoreface, or, as in this 
report, the inner shelf (Figure I). The inner shelf extends from the sea- 
ward edge of the surf zone to the landward edge of the continental shelf. 
It is affected by the strong agitation that results from sediment resuspen- 
sion caused by shoaling of nonbreaking waves. The inner shelf is friction- 
dominated by both bottom and sea-surface boundary layers which overlap 
and frequently occupy the entire water column (Wright, in press). The 
inner shelf differs from the surf zone, which is also characterized by 
strong agitation of the bed by waves. The bed of the surf zone, however, 
is affected by the bore-like translation of waves following wave breaking 
(Komar 1976), and by wave-induced longshore currents and rip currents. 

Cross-shore transport of sediment across the inner shelf has a great 
effect upon short- and long-term fluctuations of beach and surf zone sand 
storage as well as the morphology and stratigraphy of the inner shelf. 
Although surf zone and nearshore processes and sediment transport have 
been extensively addressed in the literature, inner shelf processes and sedi- 
ment transport, particularly in the cross-shore direction, are not well 
understood. The complexity and interdependence of the mechanisms con- 
trolling transport on the inner shelf make it very difficult to comprehen- 
sively understand and describe the processes affecting sediment on the 
inner shelf. In response to this, Wright (1987) stated that a goal of the 
scientific community should be "to devise a more universal conceptual 
framework capable of better accounting for shoreface transport, erosion, 
and deposition in time and space." 

Knowledge of sediment transport to and from the inner shelf region has 
important implications to engineering works such as beachfill design and 
dredged material placement. In computing a sediment budget for a beach- 
fill project, offshore gains and losses are usually assumed to be negligible 
in the sediment budget calculations. While this assumption recognizes the 
difficulty in quantifying inner shelf exchanges, it is probably incorrect dur- 
ing significant events. Defining limits for the active nearshore profile 
under varying conditions can aid in placing dredged material so that it 
will likely move onshore, offshore, or remain stable. 

Chapter 1 lntroduction 



Figure 1. Continental shelf cross-sectional profile (site specific to the mid-Atlantic Bight 
of the United States). Dl and di (from Hallermeier (1 981 a)) refer to the 
seaward limit of surf-related effects, and the seaward limit to sand motion by 
normal waves, respectively 

Morphologic Surf Inner Continental Continental Zone Zone Shelf (Shoreface) Outer Continental Shelf Slope 
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Seafloor Normal Strong Bed Periodic Bed 
Response Agitation By Waves f Agitation By Waves - ? - ?  

Most models predicting shoreline change and cross-shore profile shape 
and changes are based on a profile of equilibrium which recognizes that 
for a given wave condition or average wave condition there is a profile 
shape (concave upward) that is in equilibrium with the wave conditions. 
While useful, this concept ignores the fact that, in addition to wave action, 
many other processes affect sediment transport. Moreover, cross-shore 
sediment transport is also affected by the regional geological framework 
and profile shape, as well as hydrodynamic conditions. 

Littoral Zone 

Purpose 

The purpose of this report is to summarize literature which addresses 
the exchange of sediment between the beach and the inner shelf through 
analysis of physical processes, sediment transport, and stratigraphy. Spe- 
cific topics considered include the following: 

I 
Shoal Zone 1 

I 

a. Depth of closure and extent of sediment transport landward and 
seaward of this zone. 

Offshore Zone (~ol lermeier 1981 0) 

I 

At 4 
Evidence of Sediment 

Chapter 1 Introduction 

I I 
30rn 200m 

(Wright 1987) (Kornar. Neudeck 
and Kulm 1972) 

Transport O Water Depth 17m (Hayes1 967a, 
Pearson and Riggs 1981) 



b. Processes that cause cross-shore movement of sediment. 

c. Processes that cause net offshore and net onshore movement of 
sediment. 

d. Amount and physical characteristics of beach material lost to the 
offshore. 

e. Long-term fate of sediment that has moved offshore. 

f. Relationship between depositional structures and flow processes. 

g. Impact of episodic storms on sedimentation. 

This literature review will help to define the current state of knowledge 
concerning cross-shore sediment transport on the inner shelf and sediment 
exchange between the beach and the inner shelf. Discussions will revolve 
around how sediment transport on the inner shelf is related to the equilib- 
rium profile, depth of closure, sedimentation and stratigraphic character- 
istics of the inner shelf, and differences in sedimentationlstratigraphic 
patterns between fair-weather and storm conditions. 

While this literature review does not comprehensively review all pub- 
lished material concerning inner shelf cross-shore sediment transport, it 
does provide reviews of some of the more important studies. In addition, 
comprehensive lists of inner shelf cross-shore sediment transport studies 
are included in the bibliography sections of the appendices. 

Outline of Chapters 

This literature review is divided into five chapters and three appendi- 
ces. Chapter 2 discusses the equilibrium profile and depth of closure, and 
the importance of the geologic framework on inner shelf changes. Chap- 
ter 3 addresses several topics that verify the cross-shore transport of sedi- 
ment on the inner shelf. These topics include mechanisms of inner shelf 
sediment transport, surf zone and inner shelf cross-shore sediment trans- 
port, beach-inner shelf sediment exchange, stormlfair-weather sediment 
transport, and storm sedimentation models. Chapter 4 concerns the sedi- 
mentation structures and stratigraphy of the inner shelf and includes 
topics such as inner shelf sedimentary features, inner shelf stratigraphy, 
cross-shore stratigraphic sequences, and storm-related stratigraphy. Chap- 
ter 5 summarizes some of the more important findings of this review. 

Appendix A provides a glossary of useful terms. Appendix B is a bibli- 
ography of cross-shore sediment transport studies organized by topic. 
Appendix C is a bibliography of cross-shore sediment transport studies 
with respect to topic and region. 
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2 lnner Shelf Concepts 

Introduction 

This chapter reviews concepts that are crucial in determining the geo- 
logic aspects of inner shelf cross-shore sediment transport. These con- 
cepts include the equilibrium profile, the depth of closure, and the effect 
of the geological framework on the equilibrium profile and cross-shore 
sediment transport processes. These concepts are of concern to the engi- 
neering and scientific community primarily due to the unquantifiable 
amounts of sediment that are transported onshore and offshore of the inner 
shelf. Additional references concerning these topics can be found under 
individual reference lists entitled "Equilibrium ProfileIProfile Adjustment 
References" and "Depth of Closure References" in Appendix B. 

Equilibrium Profile 

The equilibrium profile was first defined by Fenneman (1902), who 
stated "There is a profile of equilibrium which the water would ultimately 
impart, if allowed to carry its work to completion." Additional equilib- 
rium profile studies include those by Cornaglia (1 889); Ippen and Eagle- 
son (1955); Eagleson, Glenne, and Dracup (1961); and Zenkovich (1967), 
who argued in terms of the null point hypothesis. This hypothesis states 
that shoreward increases in wave orbital asymmetry should be counterbal- 
anced by shoreward increases in bed slope, thus creating an equilibrium 
profile. 

Studies at Mission Bay, California, and the Danish North Sea Coast by 
Bruun (1954) found that the average of field profiles fits the relationship: 

where 

h = water depth 
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A = scaling parameter dependent on sediment characteristics 

y = distance offshore 

The findings of this study are complemented by several laboratory studies 
including Rector (1954); Eagleson, Glenne, and Dracup (1963); Swart 
(1974); and Vellinga (1983). 

A model concerning shoreline change in response to rising sea level 
(known as the Bruun Rule) was introduced by Bruun (1962). In this 
study, Bruun stated that the equilibrium profile described by Equation 1 
would translate landward and upward while maintaining the original shape 
of the profile (Figure 2). Additional inner shelf equilibrium profile model 
studies include Inman and Bagnold (1963), Bailard (1981), and Bowen 
(1980). These models assume that the oscillatory motion of waves is the 
most important criterion in the development of the inner shelf equilibrium 
profile. 

Dean (1977) stated that the equilibrium profile occurs when bed shear 
stress and the energy flux dissipation rate (function of wave energy den- 
sity and group velocity) become equal everywhere over the profile. Dean 
(1983) further defined the equilibrium profile as "an idealization of condi- 
tions which occur in nature for particular sediment characteristics and 
steady wave conditions." 

In proposing a model of destructive forces acting in the surf zone that 
would affect the equilibrium profile, Dean (1977) also reconsidered the 
equilibrium profile relationship by analyzing 504 beach profiles along the 
U.S. Atlantic and gulf shores (taken from Hayden et al. (1975)). Dean 
developed the following relationship: 

Figure 2. Translation of the original equilibrium profile in response to a rising sea level 
(after Bruun (1 962)) 
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By applying the least squares fit to each of the profiles, Dean (1977) 
found ranges of the values for the parameters A and n (A ranged from 
0.0025 to 6.3 1 ; n ranged from 0.1 to 1.4 with an average of 0.67, thus 
agreeing with Equation 1 of Bruun (1962)). 

For Dean's (1977) model, he assigned a value of n = 213 when the rate 
of wave energy dissipation per unit volume of the water column is equal 
over the profile and n = 215 when the rate of wave energy dissipation per 
unit area of the sea bed is equal over the profile. Since the n value of 213 
matched the average n for the 504 profiles (0.67), Dean (1977) stated that 
the critical factor in developing a profile of equilibrium must be the rate 
of wave energy dissipation per unit water column volume. Dean (1977) 
left the sediment scale parameter A as the only free variable. This 
resulted in a much smaller range of A values between 0.0 and 0.3. 

Moore (1982), Dean (1987), and Kriebel, Kraus, and Larson (1991) 
related A to the sediment fall velocity using a single grain size for an 
entire profile. 

Dean and Maurmeyer (1983) review several profile response models 
including those of Bruun (1962) and Edelman (1968, 1970), as well as sev- 
eral evaluations of Bruun's model including those of Schwartz (1965, 
1967), Dubois (1975, 1976, 1977) and Rosen (1978). Dean and Maur- 
meyer found that: 

a. Existing shore response models are useful for predicting long-term 
evolution due to relative sea-level rise. Better methods and field 
data are required to improve the capability of predicting depth of 
effective sand motion and the associated width of this zone. 

b. The Bruun rule has been validated qualitatively and, to the limit of 
our knowledge of the relevant processes, quantitatively for the case 
of nonbarrier island systems. Dean and Maurmeyer (1983) state 
that for barrier island systems which migrate landward, their own 
model is more appropriate. 

c. Of the existing models of the Bruun type, the Edelman (1970) model 
represents profile evolution as a continuing process and is therefore 
probably more representative of long-term response. 

d. There is a need for application of improved profile response models 
that incorporate the effects of noncompatible sediment eroded and 
gradients in longshore sediment transport. 

e. There is a need for improved definition of the detailed dynamics of 
beach profile response. This will probably require laboratory and 
field measurements under long-term and short-term (storm) events. 
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Larson (1991) described the profile of equilibrium as occurring when: 
"A beach of specific grain size, if exposed to constant forcing conditions, 
normally assumed to be short-period breaking waves, will develop a pro- 
file shape that displays no net change in time." 

Dean (1991) listed four characteristics commonly associated with equi- 
librium beaches: 

a. They are usually concave upwards. 

b. The smaller the sand diameter, the more gradual the slope. 

c. The beach face is usually planar. 

d. Steeper waves result in more gradual slopes. 

Pilkey et al. (1993) contend that the profile of equilibrium equation is 
inadequate to define the inner shelf profile shape and therefore should not 
be used as a basis for predictive models of profile evolution. First, 
although the equation provides an average inner shelf profile cross sec- 
tion, it does not effectively describe the true profile shape as it tends to 
ignore the effects of bars, and oversimplifies wave-inner shelf interac- 
tions. However, the equation does provide a useful guide particularly for 
long-term response of the "average profile." Secondly, the inner shelf is 
composed of various sediment grain sizes. The assignment of a value of 
0.67 to the variable n in the profile equation, thus leaving a smaller range 
of values of the sediment scale parameter A (of 0.0 to 0.3), implies that 
beach profile shape can be calculated from sediment characteristics (parti- 
cle size or fall velocity) alone. 

Pilkey et al. (1993) state that the profile shape of the inner shelf is due 
to many factors, including the following: 

a. Wave climate (particularly the frequency of big storms). 

b. Sediment supply. 

c. Rate of shoreline and inner shelf retreat. 

d. Surficial sediment grain size. 

e. Underlying geology (Figure 3). 

Depth of Closure 

The model proposed by Bruun (1962) concerning shoreline change in 
response to rising sea level also introduced the concept of depth of clo- 
sure - "the point on the equilibrium profile beyond which there is no 
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I .  Non-Headland Transgressive lnner Shelf (Sand Rich) 

A. Mainland lnner  Shelf 

8. Barrier Island inner Shelf 

II .  Subaqueous Headland Inner Shelf (Sand Poor) 

A. Muddy lnner  Shelf 

8. Hard Rock lnner  Shelf 

-- -- 
- - - - - - - - - Predicted Equilibrium Profile ----_ 

Figure 3. Possible inner shelf types resulting from different characteristics of underlying 
geology (after Pilkey et al. (1993)) 
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significant net offshore transport of sand." Bruun examined evidence for 
the capability of offshore currents to transport sediment beyond the equi- 
librium profile closure depth. He chose 18 m as a "reasonable assump- 
tion" for this closure depth. He based this on the depth at which there is 
no measurable (within the error bars of profile measurement) change in 
pre- and post-storm inner shelf profiles. 

Hallermeier (1978, 1981a) presented a model to estimate the seaward 
limit of sediment transport resulting from erosion (or offshore sediment 
transport). He developed a simple predictive equation, based on labora- 
tory studies, to estimate the annual depth of the seaward limit. He defined 
two limits to an area he called the shoal zone (Figure I) .  In the shoal 
zone, "surface waves are likely to cause little sand transport; ... waves 
have neither strong nor negligible effects on the sand bed" (Hallermeier 
1981a). The seaward limit to the shoal zone (d,) is the depth limit to sedi- 
ment motion initiation by normal waves. This implies that significant 
onshore-offshore sediment transport is restricted to water depths less than 
d. The oflshore zone is seaward of the shoal zone and is characterized by 
insignificant onshore-offshore transport by waves. 

The landward limit of the shoal zone (dl) separates the shoal zone and 
the littoral zone. The littoral zone is characterized by significant long- 
shore and onshore-offshore sediment transport due to increased bed stress 
and sediment transport by breaking and near-breaking waves. According 
to Hallermeier (1977), dl can be described by a critical value of a sedi- 
ment entrainment parameter (OC) in the form of a Froude number: 

This critical value assumes that an intensely agitated bed usually exists 
seaward of the surf zone. Hallermeier (1977) suggested an analytical 
approximation, using linear wave theory for shoaling waves, to predict an 
annual value of dl:  

where 

dl = annual depth of closure below mean low water 

He = nearshore nonbreaking wave height exceeding 12 hrlyr 

Te = corresponding wave period 

g = acceleration due to gravity 

According to the above equation, dl  is primarily dependent on wave 
height with an adjustment for wave steepness. 
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Depth dl  is considered the depth of closure and is used in estimating 
offshore closure limits for use in beach fill design. Hallermeier (1977) 
defined depth of closure as the minimum water depth at which no measur- 
able or significant change in bottom depth occurs based on profile surveys. 

To emphasize the importance of differences in wave and sand charac- 
teristics and wave variability on open sea coasts, Hallermeier (1978, 
1981b) computed the depths dl  and d for 30 sites on the Pacific, Atlantic, 
and Gulf of Mexico coasts using the wave climate study of Thompson 
(1977) and data from the Littoral Environmental Observation (LEO) Pro- 
gram. For the Gulf of Mexico coast (seven sites), the d, and d values 
were -4.2 m and -9.9 m, respectively. For the Atlantic coast (11 sites), dl 
and d were -5.7 and -22.1 m, respectively. Dl and d values at the Pacific 
coast (12 sites) were -6.9 and -42.9 m, respectively. Differences in dl  and 
d values stated above are a result of differences in significant wave 
height, wave period, and mean sediment grain diameter. 

Boyd (1981) documented that the maximum depth of the initiation of 
sediment movement (similar to Hallermeier" (1981a) d) at the New South 
Wales, Australian continental shelf fluctuates with wave conditions (Fig- 
ure 4). For instance, for wave height of 0.5 m and periods of 7 sec, this 
depth is -10 m; for wave height of 2 m and periods of 12 sec, this depth is 
-60 m. 

Kraus and Harikai (1983) defined depth of closure as the minimum 
depth at which the standard deviation in depth change decreases markedly 
to a near constant value. 

Birkemeier (1985) compared data from two profiles located in Duck, 
North Carolina, between August 1980 and December 1982 to Haller- 
meier's equation by measuring wave conditions that existed between pro- 
file surveys that exhibited offshore sand movement (Figure 5). 
Birkemeier (1985) found good agreement with the form of Equation 4, but 
recomputed the coefficient to better fit the data. He also found reasonable 
agreement using only He in Equation 5: 

where 

dl = nearshore limit, or closeout depth relative to mean low water 

H e  = peak nearshore storm wave height, which is exceeded only 
12 hrlyear 

He stated that this equation is probably site-specific. 

Kraus (1992) conceptualized that the beach profile responds to wave 
action between two limits, one limit on the landward side where the wave 
runup ends and the other limit in deeper water where the waves can no 
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Maximum depth 

Transition zone 

Zone of sheet flow 

Figure 4. Fluctuations of inner shelf bed form zones and initiation of sediment motion with 
respect to significant wave Height (H) and period (T) (after Boyd (1981)) 

longer produce a measurable change in depth. He calls this latter limit, 
the minimum water depth at which no change occurs (as measured by engi- 
neering means) the depth of closure. The depth of closure is not the loca- 
tion where sediment ceases to move, but that location of minimum depth 
where profile surveys before and after a period of wave action, a storm 
perhaps, lie on top of one another. 

Kraus (1992) also stated that the depth of closure is time-dependent, 
that is, dependent upon the transporting capacity of the particular incident 
waves. For example, we expect the average depth of closure for the sum- 
mer to be less than that in winter. Similarly, the "storm of the decade" 
will alter the profile elevation to a much greater depth than occurs during 
a typical storm season. In engineering projects, the depth of closure is 
best determined through repeated accurate profile surveys, such as per- - 
formed with a sled. 
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FIRST SURVEY 
SECOND SURVEY 

0 200 400 600 0 200 400 600 

DISTANCE (M) 

Figure 5. Survey data from Duck, NC, from August 1981 to December 1982 showing 
fluctuation of closure depth as indicated by vertical arrows (after Birkemeier 
(1 985)) 
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Pilkey et al. (1993) state that one of the most essential assumptions that 
must hold true for the concept of the equilibrium beach profile to be valid 
is: "There must exist a closure depth beyond which there is no net off- 
shore or onshore transportation of sediment - a depth of no net sediment 
movement to and from the inner shelf even during storm-induced down- 
welling events." Pilkey et al. (1993) also defined the depth of closure as 
the depth where no vertical changes to the bed take place and where grain 
size distribution remains constant. Pilkey et al. (1993) state that the depth 
of closure does not exist, as field evidence shows that large volumes of 
sand may be moved beyond the closure depth. Such movement occurs 
mostly during offshore-directed storm flows. Studies in the Gulf of 
Mexico measured offshore bottom currents of up to 200 cmlsec and sedi- 
ment transport to the edge of the continental shelf (Hayes 1967a,c; Mor- 
ton 198 1; Snedden, Nummedal, and Amos 1988). The amount of sediment 
moved offshore was large, but it was spread over such a large area that the 
change in seabed elevation could not be detected by standard profiling 
methods (Hayes 1967a,c) (+lo cm). 

Several studies have found closure depths ranging from -5 m to -30 m 
for the U.S. Atlantic coast. Birkemeier (1985) stated that the measured 
depth of closure at Duck, North Carolina, fluctuates between -3.9 m and 
-6.4 m. However, the first conspicuous inner shelf configuration change 
at Duck occurs at - 15 m, where sediments change from well-sorted fine 
sand to muddy fine sand with the fines bound in fecal pellets (Wright, in 
press). Perhaps this depth is more likely to be the maximum depth of nor- 
mally occurring, shore-normal sediment exchange. This compares to Hal- 
lermeier's (1981b) seaward limit of sediment motion initiation (d) of 
-22.1 m for the Atlantic coast. 

Depth of closure estimates using Hallermeier's (1977) method and the 
hindcast data of Jensen (1983) include Brevard County, Florida (-7.1 rn); 
Walton County, Florida (-6.4 m); and Virginia Beach, Virginia (-5.5 rn) 
(Hansen and Lillycrop 1988). Pearson and Riggs (198 I)  state that the 
depth of closure at Wrightsville Beach, North Carolina, was at least - 16 m 
based on the presence of beach sediments at this depth. Wright (1987), in 
inner shelf studies including the use of bed elevation changes and sedi- 
ment and profile data, shows that the depth of closure was located 
between depths of -10 and -30 m depending on regional energy regimes. 

An additional estimate of depth of closure for the U.S. Atlantic coast is 
-9 m as presently used in engineering project design. This is the esti- 
mated depth where waves first affect the bottom as they move onshore, 
and there is no measurable (within the error bars of the profiling method) 
change in pre- and post-storm inner shelf profiles. In addition, sand 
ridges and irregular topography are typically located onshore of this clo- 
sure depth while a uniform sloping shelf is located seaward. 

Where Equation 4 predicts closure during the annual extreme 12-hr 
event, there exists a deficit of knowledge in predicting the depth of clo- 
sure as a function of time. In order to develop a predictive method to 
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determine the time-dependent cross-shore transport of beach nourishment 
material, Stive et al. (1992) extend the annual shoreward boundary dl 
(Hallermeier 1981b), by replacing the significant wave height exceeded 
12 hr/yr (He in Hallermeier's 1977 equation) with the significant wave 
height exceeded 12 hrfreturn period (y) (He$. Stive et al. (1992) consid- 
ered an ideal model profile upon which a hypothetical beach nourishment 
was placed and subjected to the nearshore wave climate synthesis (func- 
tion of Hsig) of Thompson and Harris (1972). They determined that dl var- 
ied greatly during different wave conditions and return periods (Table 1). 
In addition, by assuming that beach nourishment volume decreases as a 
thinning wedge in the offshore direction, the spreading evolution and 
beach nourishment foot (depth of which beach nourishment migrates) may 
be approximated by applying the extension of the Hallermeier (1977) 
equation. 

Stauble et al. (1993) analyzed 3.5 years of profile data from Ocean 
City, Maryland, considering both storm and normal wave conditions. 
Twelve profile lines extended over 5.6 km of beach, and each consisted of 
seven or more surveys to the -9-m depth contour. Stauble et al. (1993) 
found that the depth of closure ranged between -5.5 m and -7.6 m, averag- 
ing -6 m. In addition, the profile at the northern end of the survey extent 
(103rd Street) was found to be steeper and without bars, while that of the 
southern end (37th Street) was shallow with bars. However, they suggest 
that more studies are required to relate the depth of closure to bar 
evolution. 
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lnner Shelf Geologic Framework Importance 

Coastlines characterized by limited sand supplies, such as much of the 
U.S. Atlantic margin, are significantly influenced by the geologic frame- 
work occurring underneath and in front of the inner shelf (Figure 3). Pas- 
sive margin coastlines, in particular, are significantly influenced by the 
geologic framework occurring underneath and in front of the inner shelf. 
This underlying geological framework can act as a subaqueous headland 
or hard ground that dictates the shape of the inner shelf profile and con- 
trols beach dynamics and the composition of the sediment. 

The Atlantic coast of North America is an example of a coast affected 
by its geological framework. The advance of glaciers during the Pleisto- 
cene Epoch (characterized by continental glaciations at North America 
from approximately 2 million years to 10,000 years before present (ybp) 
(Evernden et al. 1964, Pratt and Schlee 1969) extended as far south on the 
Atlantic coast as northern New Jersey. North of the moraine terminus, gla- 
cial moraines composed of till (mixture of clay, silt, sand, gravel and boul- 
ders) underlie much of the land, islands (i.e. Long Island, Nantucket, and 
Martha's Vineyard), and offshore banks (i.e. Georges and Nova Scotian 
Banks). Coastal erosion of some of these features provides a variety of 
materials to the continental shelf. Conversely, south of the glacial mo- 
raine (Mid-Atlantic coast south of New Jersey), sediments are dominated 
by riverine sediments of piedmont streams that intersect the coastal plain 
strata. 

Along the North Carolina coast, Pilkey et al. (1993) discuss that there 
exist three categories of underlying geologic framework which influence 
the inner shelf profile shape: 

a. Subaerial headlands, which are composed of semi-indurated to 
indurated Pleistocene Epoch or older deposits incised by a wave-cut 
platform with a perched sand beach on the platform. 

b. Submarine headlands, composed of semi-indurated to indurated 
Pleistocene Epoch or older units, which form the platform upon 
which the modern barrier island is perched and either crop out on 
the eroding inner shelf or occur on the inner shelf as 
paleotopographic highs in front of the modern inner shelf. 

c. Nonheadland-transgressive inner shelf, commonly composed of 
Holocene Epoch (the Epoch from approximately 10,000 ybp to the 
present, which follows the continental glaciations of the Pleistocene 
Epoch) peat and mud deposits that extend from the modern 
estuaries, under the modern barrier islands, to crop out in the surf 
zone and inner shelf. 
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The Pleistocene section of the entire North Carolina coastal system rep- 
resents a complex record of multiple cycles of coastal deposition and ero- 
sion in response to numerous glacial-eustatic, sea-level cycles (Riggs, 
Cleary, and Snyder, in press). During each glacial episode, fluvial chan- 
nels severely dissected previously deposited coastal systems. The sub- 
sequent sea-level transgression then produced a ravinement surface that 
migrated landward and further eroded large portions of previously depos- 
ited coastal sediments by inner shelf erosion. This process of older units 
supplying sediment to the inner shelf of barrier islands was termed shore- 
face, or inner shelf, bypassing by Swift (1976). The fluvial channels were 
sequentially backfilled with fluvial, estuarine, and shelf sediments. Pre- 
sent day sea level has produced a modern sequence of coastal sediments 
that have been deposited unconformably over the eroded remnants of Pleis- 
tocene sequences composed of different lithofacies. Niedoroda, Swift, 
and Hopkins (1985) stated that this seaward thinning and fining veneer of 
modern inner shelf sediments over the older Pleistocene lithofacies is 
ephemeral and easily removed from the inner shelf during major storms. 

On a smaller scale, the Nags Head/Kitty Hawk and the Rodanthe/ 
Buxton areas on the Outer Banks of North Carolina, although separated by 
only 40 km, have distinctly different geological settings resulting in sig- 
nificantly different inner shelf profiles (Pearson 1979) (Figure 6). At the 
Nags HeadIKitty Hawk area, the inner shelf profiles contain two major 
sediment units including a modern inner shelf sediment wedge, composed 
primarily of reworked inner shelf sediments that thin in a seaward direc- 
tion. These form a thin blanket over the in situ relict sediments that will 
ultimately crop out on the inner shelf. Pearson (1979) stated that this mod- 
ern sediment wedge is periodically stripped away during extreme high- 
energy periods; thus exposing, possibly eroding, and transporting the 
relict units. By this mechanism, relict sediments are eroded and intro- 
duced into the modern sediment regime. In addition, the relict sediments 
underlying the thin;variable inner shelf sand sheet must also have a major 
impact upon the shape of the entire inner shelf profile. 

In the RodantheJBuxton area, the inner shelf is controlled by Pleisto- 
cene hard-bottom topographic features that act as headlands and intersect 
the lower beach face at acute angles. These topographic features are be- 
lieved to be a result of indurated Pleistocene stratigraphic units which out- 
crop in the Rodanthe area (Pilkey et al. 1993). These features include 
Wimble and Kinnakeet Shoals, permanent features up to 6 m in relief (Fig- 
ure 7). 

According to Pilkey et al. (1993), these vastly different inner shelf fea- 
tures have the following characteristics: 

a. They dramatically affect the cross section of the inner shelf and 
beach profile. 

b. They create major changes in the orientation of the barrier island 
(particularly at Rodanthe). 
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Figure 6. Location of the Outer Banks of North Carolina 
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Figure 7. Geologic cross section through the Outer Banks at Rodanthe showing the 
Pleistocene units cropping out on the inner shelf forming Wimble Shoals 
(after Pilkey et al. (1 993)) 

c. They are not in equilibrium with incoming wave energy, suggesting 
that these features erode. 

d. They have dramatic impacts upon the energy regime affecting the 
adjacent inner shelf through wave refraction and setup. 

In addition, the geomorphic nature of an area must also be considered 
when determining mechanisms and resulting shelf sediment transport. In 
examining patterns of sedimentation on the continental shelf, Swift (1976) 
examined the mechanisms by which the nearshore is penetrated (at the in- 
ner shelf/oceanic process boundary and at river mouths) and how sedi- 
ment is injected into the shelf system. He found that the original mode of 
formation of the coast and surrounding areas had a large effect on present 
day sedimentation patterns. Swift (1976) differentiated between 
allochthonous and autochthonous settings. Allochthonous shelves 
(shelves presently composed of sediment formed elsewhere and sub- 
sequently deposited on the shelf) are typically floored by fine sands to 
muds (due to the introduction of riverine sediment through river-mouth by- 
passing) and are usually featureless, as these fine sediments traveI in sus- 
pension. In addition, there is little bed form formation, as fine sediments 
have low angles of repose. Autochthonous shelves, or shelves presently 
composed of sediment originally derived from previous erosion of the 
shelf in its present location, are covered by coarser- grained sand of local 
origin. 
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3 Evidence of Cross-Shore 
Sediment Transport 

Introduction 

This chapter examines literature concerning evidences of cross-shore 
transport of sediment on the inner shelf. Patterns and mechanisms of sedi- 
ment transport on the inner shelf, particularly in the cross-shore dimen- 
sion, and of beach-shelf sediment interchange are poorly understood 
(Wright et al. 1991). Consequently, the generation of predictive theories 
which address these mechanisms and effectively recreate their effect on 
the cross-shore transport of sediment across the inner shelf is very diffi- 
cult. Several authors (Wright 1987, Nummedal and Snedden 1987, Pilkey 
et al. 1993) concur that a model directly relating cross-shore sediment 
transport to transport mechanismslprocesses is needed. 

Additional topics discussed in this chapter include surf zone and inner 
shelf cross-shore transport of sediment, interchange of sediment between 
the beach and the inner shelf, and if this interchange results in the loss of 
sediment from the beachlinner shelf system to the outer shelf, stormlfair- 
weather sediment transport and storm sedimentation models. The purpose 
of the section concerning cross-shore sediment transport is not to provide 
a comprehensive review of all the theories of cross-shore sediment trans- 
port, but to discuss some of the evidences of this phenomenon and their re- 
lation to the theories of cross-shore sediment transport on the inner shelf. 

Mechanisms of Inner Shelf Sediment Transport 

The research of Wright et al. (1991) showed that bidirectional cross- 
shore sediment transport on the inner shelf is an exceedingly complex phe- 
nomenon driven primarily by shoaling waves, wind- and tide-generated 
currents, wave-current interactions, gravity-induced downslope transport, 
mean flows, and geostrophic circulation. However, these mechanisms 
have not been prioritized in terms of relative importance. 
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The mechanisms of cross-shore sediment transport are listed below and 
are more precisely documented in the literature by numerous authors as 
best summarized in part by Boyd (1981), Nummedal and Snedden (1987), 
Wright (1987), and Pilkey et al. (1993): 

a. Waves and wave-driven currents, including: 

(1) Powerful wave-orbital motions (Harms, Southard, and Walker 
1982; Walker, Duke and Leckie 1983; Duke 1985; Duke 1987; 
Duke 1990) and resulting orbital asymmetry (Gilbert 1889; 
Wells 1967; Nielsen 1979; Hallermeier 198 1 a; Trowbridge and 
Madsen 1984; Swift and Niedorada 1985; Dean and Perlin 1986). 

(2) Wave-induced upwelling and downwelling currents resulting 
from onshoreloffshore movement of surface water and return 
bottom flows (Morton 198 1, Snedden 1985, Wright et al. 199 1). 

(3) Wave-induced rip currents (Bowen and Inman 1969; Cook and 
Gorsline 1972; Reimnitz et al. 1976; Seymour 1983; Field and 
Roy 1984; Wright and Short 1984; Cowell 1986; and Wright et 
al. 1986). 

(4) Sediment diffusion arising from gradients in wave energy 
dissipation associated with incoming incident waves (Wright et 
al. 1991). 

(5) Sediment advection caused by wave orbital asymmetries 
associated with incoming incident waves (Wright et al. 199 1). 

(6) Long-period oscillations, which may be a more important process 
for cross-shore sediment transport in higher energy wave 
environments (Wright et al. 1991). 

(7) Interactions between groupy incident waves (alternating high and 
low waves and forced long waves) (Shi and Larsen 1984, Dean 
and Perlin 1986, Wright et al. 199 1). 

(8) Groupy long waves (a forced long wave of infragravity 
frequency resulting in alternating high and low waves) (Shi and 
Larsen 1984, Dean and Perlin 1986, Wright 1987). 

b. Wind- and tide-driven currents including: 

(1) Semidiurnal and diurnal tidal currents (May 1979, Wright 1981). 

(2) Strong, unidirectional currents from wind forcing (Morton 1981). 
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(3) Wind-induced upwelling and downwelling currents resulting 
from onshore/offshore movement of surface water and return 
bottom flows (Niedoroda et al. 1982; Morton 1981; Snedden 
1985; Wright et al. 1986, 1991). 

(4) Tidal currents. 

(5) Storm surge ebb currents (Brenchley 1985). 

c. Interaction of waves and currents (Butman, Noble, and Folger 1977; 
Lavelle et al. 1978; Grant and Madsen 1979a, 1986; Vincent, 
Young, and Swift 1982; Nielsen 1983; Shi and Larsen 1984; and 
Wright et al. 199 1) including: 

(1) Subharmonic and infragravity wave orbital interactions with the 
bottom sediment and with wave-induced longshore currents 
(Wright and Short 1984). 

(2) Interactions between oscillatory flow and mean flow (Lundgren 
1973; Smith 1977; Bakker and Van Doorn 1978; Grant and 
Madsen 1979b, 1986; Kemp and Simmons 1982; Wiberg and 
Smith 1983; Christofferson and Jonsson 1985; Coffey and 
Nielsen 1987). 

d. Gravity-induced downslope transport often of highly concentrated 
sediment (Bruun 1962, Hayes 1967a, Dean 1977, Kobayashi 1982, 
Pilkey et al. 1993). 

e. Forcing meanflows, which dominate and cause offshore transport 
during storms and contribute significantly to cross-shore sediment 
flux during fair-weather and moderate energy conditions (Wright et 
al. 1991). 

J: Geostroghic circulation (Ekman spiral) and its superposition on wave 
motions (Komar 1976; Swift et al. 1983; Vincent, Young, and Swift 
1983; Cacchione et al. 1984; Allen 1982; Neshyba 1987; Nottvedt 
and Kreisa 1987; Nummedal and Snedden 1987; Swift and 
Nummedal 1987). 

g. Small-scale boundary layer processes (Wright 1994). 

h. Physical oceanographic processes including oceanic currents 
(Csanady 1972; 1976; 1977 a,b; 1982; Csanady and Scott 1974; 
Halpern 1976; May 1979; Schwab et al. 1984). 

Additional mechanisms contributing to cross-shore sediment transport 
include: 

a. Storm surge-controlled breakout of coastal lagoons (Hayes 1967a, b, 
c), tidal inlets, and submarine canyons. 
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b. Turbidity currents (Bates 1953; Hayes 1967 a, b, c; Brenchley 1985; 
Seymour 1986; Wright et al. 199 1). 

c. Beach state (e.g. the first winter storm moving much more sediment 
than subsequent storms) including beach slope (Bascomb 195 1, 
King 1972, Komar 1976, Shore Protection Manual 1984). 

d. Formation of shell lags and a wide variety of bed forms (ranging 
from ripple marks to offshore bar systems)(Pilkey et al. 1993). 

e. Organic scum layers (Pilkey et a1.1993). 

f. Variations in sediment pore pressure (Pilkey et al. 1993). 

g. Variations in the degree of sediment compaction and consolidation 
between storms (Pilkey et al. 1993). 

h. Irregular inner shelfshapes (bedrock) which affect wave refraction 
patterns (Pilkey et al. 1993). 

i. Coastal jets (Csanady 1972, 1977b; Csanady and Scott 1974; 
Ludwick 1977). 

j. Topographic gyres (Bennet 1974, Csanady 1975). 

k. Kelvin waves (Munk, Snodgrass, and Gilbert 1964; Munk, Snodgrass, 
and Wimbush 1970; LeBlond and Mysak 1977). 

I. Vertical density stratification (Wright 1987). 

Surf Zone Cross-Shore Sediment Transport 

Much is known about nearshore sediment movement under shoaling 
waves (Komar 1976) and the documentation of cyclic patterns of surf- 
zone change (Wright et al. 1979, Nummedal and Snedden 1987). It has 
been documented that the most important concepts of surf zone dynamics 
and sediment transport are: 

a. Orbital asymmetry (as expressed by second-and higher-order Stokes 
theory and supported by Gilbert (1889), Wells (1967), Hallermeier 
(1981a), Swift and Niedoroda (1985)). 

b. Radiation stress theory and derived understandings 
(Longuet-Higgins and Stewart 1964). 

c. Standing long waves and edge waves of infragravity frequency (Guza 
and Thornton 1985a). 
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Two useful models include Bailard's (198 1) energetics model, which 
estimates sediment flux from measured wave and current data over the 
surf zone, and Guza and Thornton's (1985a, b) model, which is concerned 
with surf zone conditions where bed shear stresses and energy dissipation 
are strongly dominated by waves. Equations of both models help to deter- 
mine if the cross-shore component of the immersed weight sediment trans- 
port within the surf zone is onshore or offshore. 

A laboratory model developed by Hattori and Kawamata (1980), and its 
comparison with field data, is one approach which concerns the cross- 
shore transport of sediment in the surf zone. This model is based on the 
concept of the balance of power extended on sand grains generated by 
breaking waves, the beach slope, and the effect of gravity. Hattori and 
Kawamata theorized that cross-shore transport of sediment in the surf 
zone is a function of the dimensionless fall-time parameter as described 
by: 

where: 

C = a constant determined from laboratory and field data 

when 

C c 0.5 onshore transport results - accretive profile 

= 0.5 no net transport results - equilibrium profile 

> 0.5 offshore transport results - erosive profile 

tan p = bottom slope in the surf zone 

Ws = fall velocity of a sand grain of diameter dS0 

T = wave period 

Ho = deepwater significant wave height 

Lo = deepwater wavelength 

Hattori and Kawamata (1980) continue that net cross-shore transport in 
the surf zone is a result of the stirring power Ps (which is a function of 
submerged weight of sand grains, maximum wave-induced velocity, bot- 
tom slope in the surf zone, water depth at the breaking position, and width 
of the surf zone) and the resisting power Pr (which is a function of fall 
velocity of a sand grain and the submerged weight of the sand grain. 
When Ps > Pt sand grains keep in suspension due to breaking waves, and 
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sand grains are transported seaward in the form of a cloud by wave- 
induced currents (Sunamura 1980). When Pr > Ps, sand grains tend to roll 
and jump as bed load and move shoreward. 

Inner Shelf Cross-Shore Sediment Transport 

Introduction 

Understanding of surf zone processes can be applied, at least in con- 
cept, to processes occurring on the inner shelf. For instance, Wright et al. 
(1991) applied surf zone sediment transport equations of Bailard (1981) 
and Guza and Thornton (1985 a,b) to predict inner shelf cross-shore sedi- 
ment transport. Wright et al. (1991) found poor agreement between these 
surf zone and inner shelf sediment transport equations. Wright et al. 
(1991) state that these types of equations are needed to better predict 
cross-shore sediment transport on the inner shelf. 

For wind-driven current patterns, Vincent, Young, and Swift (1983) 
divide the inner portion of the coastal ocean into the following three zones 
based on controlling sediment transport mechanisms: 

a. Ceostrophic (offshore; seaward of approximately the -15-m depth). 

b. Transition. 

c. Friction-dominated (seaward of the surf zone to approximately -10-rn 
depth). 

Landward of the 10-m contour in the fric ion dominated zone, sediment 4- - 
transport rates are on the order of 1 x 10 glcmlsec and are primarily a 
function of asymmetric wave orbitals while seaward of the 10-m contour 
in y e  geostrophic zone, sediment transport rates are approximately 1 x 
10 glcmlsec (Vincent, Young, and Swift 1983). 

Geostrophic zone 

Geostrophic circulation of ocean waters and sediment transport in this 
zone are controlled by the following factors: 

a. Cross-shore mean bottom currents resulting from wind shear and 
tide-related currents. 

b. Currents generated by the Coriolis force. 

c. Upwelling/downwelling conditions. 
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The Coriolis force is defined as an apparent force resulting in the path 
deflection of an object due to the earth's rotation (Neshyba 1987). In the 
Northern Hemisphere, an object or water body undergoing movement on 
the earth's surface will be deflected to the right (clockwise) of the move- 
ment. The Ekman transport or drift, a function of the Coriolis force, 
states that as winds exert friction drag over an ocean of uniform density, a 
thin layer of surface water moves at an angle from the original wind (to 
the right in the Northern Hemisphere). This rotation continues as subsur- 
face parcels of water are also rotated by the Ekman transport in that same 
direction. Therefore, there is a depth at which the water moves opposite to 
that of the surface wind (Neshyba 1987). Nummedal and Snedden (1987) 
have documented the Ekman transport in a three-layer inner shelf flow 
model, which shows that if surface currents are obliquely onshore, cur- 
rents at mid-depths in the water column will be alongshore. Bottom cur- 
rents will be oriented obliquely offshore. 

Upwelling and downwelling currents are also geostrophically control- 
led currents that form due to orientation of the wind direction near a 
coast. For instance, upwelling conditions occur when offshore-directed 
winds transport surface waters in an offshore direction. Surface waters 
are then replaced by subsurface water and sediment, which moves on- 
shore. Downwelling conditions, conversely, occur as onshore-directed 
winds transport the surface water onshore. Surface waters are then re- 
flected by the beach, thus creating offshore-directed return flow of subsur- 
face water parcels and sediment transport. 

On the west coast of the United States, winds from the south will tend 
to deflect surface waters in a clockwise direction, or onshore, thus result- 
ing in downwelling of deeper water parcels. Winds from the north will be 
deflected offshore, thus resulting in upwelling of deeper water parcels. 
On the east coast of the United States, upwelling tends to occur when 
winds are from the southwest, south, or northwest, while downwelling 
tends to occur when winds are from the northeast (Swift 1976). 

Wright et al. (1986) conclude that northeaster storms create strong, 
southerly jet-like flows along the mid-Atlantic Bight. These flows affect 
the floor out to depths as far as -8 m, which results in downwelling and 
offshore sediment transport. 

Friction-dominated zone 

In the friction-dominated zone, a multitude of mechanisms affect inner 
shelf cross-shore sediment transport (see previous list of mechanisms of 
inner shelf cross-shore sediment transport). Overall, Wright et al. (1991) 
found that incoming incident waves were of primary importance in bed 
agitation (shear stress) and suspension of sediment on the inner shelf, 
while near-bottom tide- and wind-induced mean flows were of primary im- 
portance in the cross-shelf transport of sediment on the inner shelf. 
Wright et al. (1991) state that this mean-flow-generated cross-shore 
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transport of sediment was dominant or equal to that generated by incident 
waves in all cases and at all times. 

Pilkey and Field (1972) and Wright et al. (1991) distinguish between 
the primary causes of onshore and offshore cross-shelf sediment transport. 
Pilkey and Field (1972) summarize the mechanisms of onshore transport 
of sediment on the inner shelf, which include wave and tidal current phe- 
nomena such as: 

a. Onshore component of asymmetrical wave orbitals under shoaling 
conditions. 

b. Onshore-oriented dominating tidal flood currents in shallow water. 

c. Both the onshore and offshore components associated with 
storm-induced bottom currents. 

In addition, Wright et al. (1991) state that incident waves are an important 
mechanism of the onshore transport of sediment. 

Sediment transport mechanisms documented to cause onshore and off- 
shore cross-shore sediment transport include the following: 

a. Orbital asymmetry. 

b. Interaction of incident waves with infragravity waves and mean 
offshore flows. 

c. Wave groupiness. 

d .  Slope of the shelfand effects of gravity. 

e. Rip currents (Wright et al. 1991). 

Discussion of these mechanisms of inner shelf offshore and onshore cross- 
shore transport follow. 

Orbital asymmetry. Findings by Cook and Gorsline (1972) during 
studies at Palos Verde, California, as supported by May (1979) and Wright 
et al. (1991) indicate that orbital asymmetry-created currents during wave 
shoaling transport sediment in both the onshore and offshore directions. 
These findings include the following: 

a. Both onshore and offshore asymmetry of currents were documented 
during wave shoaling. Long-period swells and offshore breezes 
cause a net onshore transport of sediment, while short-period waves 
and onshore winds are associated with neutral or offshore flow. 
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b. Swell characteristics also affect water drift, in that long-period waves 
have onshore pulses which prevail temporarily, and thus cause net 
onshore transport of sediment. 

c. Tidal surge asymmetry includes components of both onshore and 
offshore sediment transport across the inner shelf. 

d. Tidal flux does not have a significant effect on surge asymmetry. 
However, May (1979) found that 35 percent of the kinetic energy of 
currents above the 30-m isobath in the Northern Middle Atlantic 
Bight was at a tidal frequency, thus indicating the importance of 
tidal currents in affecting sediment transport on the shelf. In 
macrotidal environments tidal currents probably dominate the inner 
shelf transport (Wright 198 1). 

e. Wind affects the ratio for durations of current flow and bottom drift, 
thus resulting in upwelling and downwelling flow. 

Cook and Gorsline (1972) and Trowbridge and Madsen (1984) discuss 
the importance of sediment transport under asymmetric waves and related 
orbital asymmetry in generating both onshore and offshore components of 
cross-shore sediment transport. Also, time and space variations in bed 
roughness when considering orbital asymmetry can affect both magnitude 
and direction of sediment transport. Oscillatory currents over rippled 
beds can cause a significant phase angle between instantaneous suspended 
sediment concentration and instantaneous velocity, resulting in sediment 
flux in a direction opposite to the net current or wave-induced mass trans- 
port (e.g. Nielsen (1979)). 

Larsen (1982) also found that the net offshore transport of sediment on 
the inner shelf is a function of the net offshore orbital asymmetry of 
waves. Currents forced by the radiation stress of variable amplitude swell 
(the higher waves suspending the sediments) are an important mechanism 
in suspending sediments resulting in the cross-shore transport of sediment 
on mid-continental shelves. 

Smith and Hopkins (1972) found that orbital asymmetry-created cur- 
rents during wave shoaling are the dominant control of net onshore trans- 
port of sediment, primarily of coarse material, on the inner shelf. 

Wave-current interaction. Grant and Madsen (1979a, 1986) theoreti- 
cally discussed combined wave-current bottom fluid shear stress and 
stated that the actual transport across the inner shelf is, in most cases, the 
result of wave-current interaction. Effects of wave-current interaction on 
the boundary layer include the following: 

a. Increases in rate of frictional dissipation of waves. 

b. Reduction in mean current speed near the bed. 
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c. Increases in bottom shear stress due to a combination of components. 

The importance of wave-current interaction in determining the magni- 
tude and direction of sediment transport is also considered by Vincent, 
Young, and Swift (1983). They found that when wave orbital velocities 
and slowly varying bottom boundary layer velocities are combined, 
stronger onsho~e combined flow results. Moreover, depending on bed 
roughness and the horizontal angle between wave incidence and the mean 
current, the vector resultant of the sediment flux may be opposite that of 
the mean current. 

Wave groupiness. Wave groupiness is also an important factor of net 
offshore transport of sediment across the inner shelf. Wave groupiness 
causes space and time variations in wave amplitude and in radiation stress 
(Sxx). Thus, momentum balance requires that slowly time-varying mean 
water level (q ) be depressed and elevated under high and low waves, re- 
spectively (w { ere SxF is greater and less, respectively). Variances in f 
cause a long-period infragravity wave. This infragravity wave has peaks 
at low primary waves which result in onshore sediment transport (i.e. 
shoreward values off (or the cross-shore long wave flow constituent)) and 
troughs at high primary waves, which result in offshore sediment transport 
(i.e. seaward values off). Since the large primary waves in the trough of 
the long wave suspend more sand (offshore-directed) than the small pri- 
mary waves of the long wave crest, there is a net seaward transport 
(Wright et al. 1991). 

Gravity-induced currents. Gravity-induced inner shelf offshore- 
directed sediment transport (as stated by early references considering the 
equilibrium profile concept (e.g. Cornaglia 1889, Ippen and Eagleson 
1955, Bruun 1962, Inman and Bagnold 1963) occurs due to the slope of 
the inner shelf being oriented in an offshore direction. This gravity- 
induced offshore transport of sediment is accentuated where fine-grained 
sediments are present, since these types of sediment can be easily sus- 
pended, especially during storm events. 

Seymour (1986), in studying different models of turbidity currents and 
their relation to inner shelf transport, confirms that these currents trans- 
port nearshore sand in an offshore direction during storms. 

Wright et al. (1991) noted that gravity plays a significant role during 
high-energy events when bed shear stress and suspended sediment concen- 
tration were greatest. If a density current develops, and the sediment is 
suspended at a greater rate than it is deposited, an autosuspending 
offshore-directed turbidity current can form. Kobayashi (1982), who de- 
veloped a model for net downslope sediment transport by oscillatory 
flows acting on a gentle slope, found that gravity-induced offshore- 
directed transport of sediment is significant. 
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Rip currents. Rip currents are also important in transporting sediment 
in an offshore direction (Field and Roy 1984). Bowen and Inman (1969) 
and Cook and Gorsline (1972) report that during the winter season, cross- 
shore movement of sediment by rip currents is in an offshore direction. 
Once transported offshore, sediment is confined by predominant seaward 
oscillations caused by steep waves and strong winds. During summer, 
long-period swells transport sediment landward to replenish the beach. 
Cook and Gorsline (1972) also present a sediment transport system 
whereby sediment is transported offshore outside of the breaker zone by 
rip currents and general diffusion, and then onshore by wave action, 
which separates silt and clay from sand. Sand is then moved alongshore 
to depths dependent upon wave characteristics. Silt and clay are separated 
in the sorting process and move out of the coastal drift system in 
suspension. 

Reimnitz et al. (1976) used side-scan sonar to show seaward-trending 
ripples out to depths of 30 m that are attributed to storm rip currents. 
Cowell (1986) measured rip currents off headland-bounded beaches dur- 
ing storms and measured velocities of greater than 1 mlsec extended to 
hundreds of meters past the surf zone. However, Field and Roy (1984) be- 
lieve that rip currents probably do not transport sand to a depth greater 
than 45 m. 

Seymour ( 1  983), in experiments at Santa Barbara, Torrey Pines, and 
Virginia Beach (as part of the Nearshore Sediment Transport Study), also 
documented rip currents as a mechanism of offshore sediment transport. 
During periods of intense storm waves, Seymour (1983) documented the 
formation of offshore bars, particularly at Santa Barbara. The formation 
of these bars is attributed to excessive longshore sediment transport and 
rip current outlets during these storms. 

Hyperpyenal plumes. Hygerpycnal plumes, or sedimentlwater flows 
of dense concentration that plunge under flows of less dense concentration 
associated with gravity flows (Bates 1953), may also result in seaward 
transport where fine-grained sediments are present (no autosuspension is 
needed). In studies by Wright et al. (1991), where bed slope was 0.6 deg, 
suspended sediment concentrations were as high as 10 gll, and underflows 
were as thick as 2 m with downslope speeds of 10-40 cm/sec, Wright et al. 
(1991) attributed this offshore-directed sediment flow to a rise of 0.6 m in 
mean water level (during this particular storm) and a resultant strong 
seaward-directed downwelling flow. 

Bar formationlmigration. Osborne and Greenwood (submitted, 1992) 
determined that cross-shore sediment transport at a non-barred inner shelf 
in Nova Scotia and a barred inner shelf at Georgian Bay are similar and a 
function of the following parameters: 

a. Local wind-forced low-frequency waves. 
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b. Mean current flows (in the Nova Scotia non-barred example, these 
flows were offshore-directed undertows). 

Additional causes of non-barred inner shelf sediment transport include 
swell, while additional causes of barred inner shelf sediment transport in- 
clude high-frequency wind wave oscillatory currents. 

Osborne and Greenwood (1992) also differentiate between sediment 
transport at different locations on the bar. On the lakeward slope of the 
bar, a net offshore sediment transport component of mean currents results 
from the offshore flow of undertow and group-forced bound long waves, 
and the landward flow mechanism of wind wave oscillatory currents. This 
is in contrast to studies on Padre Island, Texas, by Hill and Hunter (1976) 
who show that net onshore bottom currents are dominant on the seaward 
side of the bars and the bar crests under normal breaking wave conditions 
of 0.3 to 1.0 m. On the bar crest, Osborne and Greenwood (1992) state 
that there was no net transport of sediment due to a balance between off- 
shore mean transport (undertow) and onshore net oscillatory transport (in- 
teraction between both high- and low-frequency waves). Landward of the 
bar crest and in the trough, although the wind waves decrease due to dissi- 
pation of wave energy, suspended sediment transport by low-frequency 
waves is most important, thus transporting sediment in a predominantly 
onshore direction (Osborne and Greenwood 1992). 

Sediment trends 

Wright (in press), in a study at the Field Research Facility at Duck, 
North Carolina, documented that the grain size of the inner shelf over the 
upper 18 m exhibits a slight tendency to fine seaward (Figure 8). Fine to 
very fine sand (DS0 = 0.09-0.13 mm) prevails, while silts and clays com- 
prise 10-15 percent of the surficial sediment. This seaward-fining se- 
quence is a result of decreases in energy in an offshore direction. 

Different magnitudes and properties of offshore versus onshore flow 
across the inner shelf have resulted in the differential transport of fine ver- 
sus coarse sediments. Smith and Hopkins (1972) state that during storm 
events fine material is transported offshore, while coarse material is trans- 
ported onshore. They documented that fine sand moves as suspended load 
from the nearshore and is transported offshore during severe storms. Dur- 
ing non-storm periods, both fine and coarse sand move onshore by wave- 
driven bottom currents, which have a net onshore component. 

Basically, coarse material moves onshore due to the greater energy ex- 
erted by the onshore-directed wave orbitals which are shorter, and exert 
great velocities on the bed. Fine material moves offshore as suspended 
load by the offshore-oriented orbitals, which are longer and of less energy. 
Thus, the coarse material is moved onshore while the fine material moves 
offshore (Wright et al. 1991). 
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Figure 8. Cross-shelf profile of the inner shelf off Duck, North Carolina (after Wright 
et al. (in press)) 

Smith and Hopkins (1972) determined in their study of Columbia River 
sediments that an average particle on the shelf moves about 40 k d y e a r  in 
a longshore direction and 7 k d y e a r  in an offshore direction. The major- 
ity of this transport occurs only during a few storms each winter. Esti- 
mates of sediment transport indicate that the sand fraction moves much 
more slowly as bed load than the silt fraction as suspended load. 

Seasonal effects on inner shelf cross-shore sediment transport 

Seasonal cross-shore transport of sediment along the southern Califor- 
nia coast has been documented by Shepard (1950), Shepard and Inman 
(1 950), Inman (1 953), Inman and Rusnak (1956). and Aubrey (1 979). Dur- 
ing summer, the subaerial beach accretes, while the offshore loses sedi- 
ment. In winter, the subaerial beach erodes, while the offshore accretes. 
These changes are a result of variation in wave frequency and directional 
properties (e.g. Pawka et al. (1976)). Small-amplitude, long-period waves 
dominate in summer, while higher-energy, high-frequency storm waves 
dominate in winter. 

Aubrey (1979) examines temporal changes in beachlinner shelf profile 
configuration using eigenfunction analysis of profile data for southern 
California profiles for a 5-year period. Two seasonal pivotal points sepa- 
rating eroding and accreting regions are documented at -2 m to -3 m, and 
at -6 m. A simple model of depth-dependent seasonal sand movement 
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shows that during initial winter storms, sand is eroded from both the fore- 
shore and from depths of -6 m to -10 m and is deposited at the -2-m to 
-6-m water depth. During less energetic periods, sediment migrates both 
onshore (to the beachface) as well as offshore (to a depth of -10 m) from 
its winter site of deposition (-2 m to -6 m). This depth-dependent motion 
contradicts the single pivotal-point model previously suggested for near- 
shore seasonal cross-shore sediment motion and emphasizes the complex- 
ity of nearshore sediment transport. A sediment budget for seasonal 
cross-shore transport, based on the dual pivotal point model, consists of 
exchanges of 85 m3/m at the -3-m pivotal point, and 15 m3/m at the -6-m 
pivotal point. On a longer (5-year) time scale, beaches showed no erosion 
or accretion, suggesting that the limited coastal region is stable over this 
time period. 

Beach-Inner Shelf Sediment Exchange/Losses 

Now that evidence has been presented concerning the onshore and off- 
shore components of cross-shore sediment transport, the actual exchange 
of sediment between the inner shelf and the beach is considered. Boyd 
(198 1) emphasized that cross-shore sediment exchange represents a major 
contribution to the inner shelf sediment budget. 

Studies by Pearson and Riggs (1981) extensively documented the ex- 
change of sediment between the beach and the inner shelf at Wrightsville 
Beach, North Carolina. It is this study which has accentuated the impor- 
tance of the permanent loss of sediment from the beach-inner shelf sys- 
tem. Two findings associated with this study are important. First, 
Pearson and Riggs (1981) observed the offshore transport of replenish- 
ment sand from Wrightsville Beach to a depth of -16.6 m. This is based 
on the presence of beach nourishment sand (fine to coarse-grained gray to 
black sand with oyster shells) which is easily distinguishable from North 
Carolina continental shelf sands, which are brown in color. This suggests 
that the depth of closure at Wrightsville Beach is at least -16.6 m. 

Secondly, Pearson and Riggs (1 98 1) state that periodic renourishment 
totalling 7,300,000 cu m of material placed since 1939 (which would 
cover a 23.3-km2 area with a 14.6-cm layer of sediment) is being effec- 
tively and permanently removed from the nearshore system. This renour- 
ishment sand requirement has not decreased over time, indicating that the 
profile is not establishing an equilibrium profile. Pilkey et al. (1993) con- 
tend that if the concept of the equilibrium profile were valid, then the vol- 
ume of sand needed to nourish the profile should decrease over the years 
as it accumulates above closure depth on the inner shelf. 

In studies of Hurricanes Carla and Allen, and tropical storm Delia on 
the Texas shelf, Nummedal and Snedden (1 987) document the cross-slrore 
exchange of sediment as a great loss of sediment from the beach-inner 
shelf. They found that sand is moved offshore during storms due to 
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downwelling (three-layer flow) but is not returned onshore. Niedoroda, 
Swift, and Hopkins (1985) also supported the loss of sediment from the 
beach-inner shelf system only during storms. However, they state that 
some of the sand transferred from beach to inner shelf during storms will 
return. 

Luternauer and Pilkey (1967) employ the use of minerals (i.e. phos- 
phorite) at the North Carolina coast at Onslow Bay to document the inter- 
change of sediment between the beach and the inner shelf. They found 
that the shelf is an important source of beach sediments. This suggests 
that the shelf is a major contributor of phosphorite to landward beaches. 
Another interesting finding of this study was that a small amount of long- 
shore transport occurs on the shelf as phosphorite content is limited to 
Onslow Bay and does not spill over to other embayments. This indicates 
that phosphorite is a useful tool for determining sediment provenance and 
transportation. 

Thus, several studies support the interchange of sediment between the 
beach and the inner shelf. However, there are examples in the literature 
where no sediment interchange occurs. For instance, Meisburger (1989) 
investigated the interchange of sediment between the beach and Gilbert 
Shoal, a nearshore linear shoal off Florida. He determined that the major 
sediment source to the beach is from littoral processes, while a lesser 
amount of sediment comes from the shoal. However, the shoal and sur- 
rounding seafloor receive little, if any, sediment from the beach or nearby 
St. Lucie Inlet. The shoal obtains sediment from the nearby shelf floor 
and from in situ shell production. 

Depth of inner shelf sediment transport 

When considering sediment interchange between the shelf and the 
beach, the next logical question is to what depth is sediment transported 
and/or affected on the continental shelf. This topic was previously consid- 
ered in the "Depth of Closure" section of Chapter 2 as discussed by 
Draper (1967); Harlett (1972); Komar, Neudeck, and Kulm (1972); Smith 
and Hopkins (1972); Sternberg and Larsen (1976); Channon and Hamilton 
(1 976); Sternberg and McManus (1 972); Gadd, LaVelle, and Swift (1978); 
Vincent, Swift, and Hillard (1981); Larsen et al. (1981); and Wright et al. 
(1986). In addition, Grant and Madsen (1979a,b, 1986), Madsen and 
Grant (1976), Larsen et al. (1981), and Niedoroda et al. (1982) compute 
bed load transport at depths. Evidence of sediment transport at consider- 
able depths (greater than -40 m) follows. 

Direct current measurements on the central and outer continental shelf 
of Washington and Oregon by Smith and Hopkins (1972) at the -50-m and 
-80-m water depths showed that significant sediment transport in an off- 
shore direction, most importantly by suspended load, occurs only during 
storms. A storm with current speeds of up to 60 cmlsec transports on the 
order of 6 m3/hr/m of sediment of shelf length, while a 70-cmlsec storm 

Chapter 3 Evidence of Cross-Shore Sediment Transport 



transports 15m3/hr/m of sediment of shelf length. Net transport of sedi- 
ment is offshore. These data suggest that a single severe storm may be 
more effective in transporting sediment than several small storms. 

Komar, Neudeck, and Kulm (1972) discuss the production of orbitals 
by surface waves, which in turn create ripples, and rework shelf sedi- 
ments. Table 2 shows relationships between depth of rippling and a vari- 
ety of surface wave conditions (after Komar, Neudeck and Kulm (1972)). 

Symmetrical (wave-generated) oscillatory shore-parallel ripple marks 
(see section in Chapter 4 titled "Examples of Inner Shelf Sedimentary Fea- 
tures" for additional information on ripple symmetry) exist on the Oregon 
continental shelf out to water depths of -204 m, while asymmetrical rip- 
ples are rare. Symmetrical ripples are covered by bottom orbital veloci- 
ties (as calculated by the Airy wave theory) as well as unidirectional 
currents while asymmetrical ripples are believed to be produced by inter- 
nal waves (15- to 30-min period), as they are more similar to unidirec- 
tional currents. It is believed that upwelling currents could not have 
formed ripples (Komar, Neudeck, and Kulm 1972). 

Average Winter 
Waves 

Large Storm 
Conditions 

Long-Period 
Storm Waves 

Larsen et al. (1981) determined that at the -100-m depth on the Wash- 
ington shelf, for sediment sizes 0.03-0.07 mm, a bottom oscillating cur- 
rent of 13 cm/sec is needed to suspend sediments. These types of currents 
and waves are common during winter storms in Washington, where 
100-cmlsec velocities associated with 15-sec waves have been measured. 
Draper (1967) calculated that fine sand on the shelf edge of Britain would 
be moved at a depth of 183 m 20 percent of the year. Sternberg and 
Larsen (1976) found that relatively frequent grain motion occurs at the 
-75-m depth on the Washington shelf. 

In addition, computations of bed-load transport by Madsen and Grant 
(1976) have shown that for conditions with 1.5-m, 13-sec waves, bed load 
was entrained to a depth of -16 m. 
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StormlFair-Weather Sediment Transport 

Several researchers (Hayes 1967a,c; Murray 1970; Morton 198 1 ; Green 
at al. 1988; Wright et al. 199 1) have documented the differences in cross- 
shore inner shelf mechanisms and resulting sediment transport during fair- 
weather and storm conditions (refer to "Significant (Storm) Event 
References" in Appendix B for additional references concerning this 
topic). 

Green at al. (1988) and Wright et al. (1991) in Mid-Atlantic Bight ex- 
periments measured suspended sediment movement, wave heights, and 
mean current flows between the -7-m and -17-m depth contours at Duck, 
NC, in 1985 and 1987 and at Sandbridge,VA, in 1988. The purpose of 
this work was to identify modes, directions, rates, and causes of shore- 
normal sediment flux over the inner shelf in response to different energy 
conditions (Table 3). Field measurements were compared to energetics 
mathematical models of sand transport (Bowen 1980; Bailard 198 1; Guza 
and Thornton 1985 a,b; Roelvink and Stive 1989) who compared the con- 
tributions of mean and oscillatory flows, and separated cross-shore compo- 
nents of immersed weight sediment transport into bed load and suspended 
load. 

Fair-weather sediment transport 

Table 3 
Summary of Environmental Conditions at Duck, North Carolina, for 
Different Events (after Wright et al. (1991)) 

In documenting fair-weather processes, Green et al. (1988) and Wright 
et a]. (1991) examined data collected at the -8-m and -17-m depths during 
two data collection periods at Duck (1985 and 1987). Green et al. (1988) 
and Wright et al. (1991) found that although tides and oscillatory wave 
motion strongly influence both onshore and offshore sediment transport 
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Winter 
Swell-Dominated 
January, 1988 

Small ripples, 
irregular 

7 m 

4.0-1 3.6 cmlsec 

0.9-1.4 m 

9.7-12.9 sec 

29"-66" 

Post-Hurricane 
Fair Weather 
August, 1991 

Ripples on 
mounds and holes 

8 m 

10.6-1 3.0 crnlsec 

0.29-0.40 m 

7.0 sec 

26"-34" 

Parameter 

Bed roughness 

Depth of 
instrumentation 

Current speed 

Wave height 

Wave period 

Wavelcurrent 
angle 

Extra-Tropical 
Storm 
October, 1991 

Highly mobile 
plane bed 

13 m 

2.0-49.5 crnlsec 

1 .O - > 4.0 m 

9.0-14.0 sec 

36'-85" 

Summer 
Fair Weather 
July, 1987 

Large ripples, 
biogenic activity 

8 m 

9.0-1 6.5 cmlsec 

0.35-0.40 rn 

8.7-9.0 sec 

45"-75" 



processes, mean cross-shore flows were of greatest importance. There ex- 
isted no relation between bed stress by instantaneous cross-shore velocity 
and suspended sediment concentration. The mean cross-shore flow re- 
versed with the tide. During high tide, weak offshore flows occurred, 
while during low tides stronger onshore flows resulted. Bed load and sus- 
pended load quantities were nearly equivalent. 

In fair-weather conditions, Wright et al. (1991) found that cross-shore 
flows differed according to depth. Overall, flows at the -8-m depth tended 
to be more energetic and had greater sediment transport rates by an order 
of magnitude. At a depth of -8 m, suspended sediment transport, which 
was dominated by mean cross-shore flows, was predominantly offshore. 
However, these flows reversed direction more often than those at a depth 
of -17 m. Conversely, at a depth of -17 m, a slight landward flow from 
mean flow and oscillatory currents resulted. 

Larsen (1982) stated that offshore sediment transport on the shelf is a 
slow but steady seaward motion of resuspended sediments. This contra- 
dicted the conclusions of other researchers (e.g. Wright et al. 1991) who 
stated that offshore sediment transport on the shelf occurred during a few 
events with a strong offshore component. The time required to establish 
steady flow conditions is approximately a tidal cycle offshore, but de- 
creases to several hours at shallower depth at the inner shelf due to 
friction. 

Moderate energy sediment transport 

Moderate energy processes, and related sediment transport, as studied 
at Sandbridge, VA, in 1988, were dominated primarily by mean flows, inci- 
dent wave orbitals, and tidal currents (Wright et al. 1991). The dominant 
flow was oriented onshore (which may be a function of tidal currents and 
upwelling from west winds during the study period). As in fair-weather 
processes, there was little relationship between suspended sediment trans- 
port and bed stress during moderate energy conditions. Suspended sedi- 
ment concentration, which at times equaled 1.5 kg/m3, varied considerably 
over the period. Tidal variation also occurred, as it did during fair- 
weather processes. However, in deference to fair-weather process peri- 
ods, weak onshore currents occurred during higher tides. 

Swell-$om inated processes 

Swell-dominated processes, as measured at Duck, North Carolina, in 
1988 (during wave conditions of Hs of 0.85-1.4 m and periods of 
10- 14 sec), resulted in overall onshore flow (Wright et al. 199 1). How- 
ever, many flow reversals occurred due to constant weak offshore-directed 
cross-shore mean flows, which opposed high-frequency landward-directed 
wave-induced oscillatory flows. These wave orbital velocities (maximum 
of 0.5 m/sec) were the main source of bed shear stress. 
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Overall, during swell-dominated conditions, the bed was strongly agi- 
tated at all times (suspended sediment concentration exceeded 1.0 kg/m3). 
Findings indicated that the suspended sediment load is dominant over bed 
load, and was directed onshore due to the landward-oriented incident 
wave orbital motion. 

Storm-dominated processes 

Storm-dominated processes were measured during a 'northeaster' storm 
at Duck, North Carolina, in 1985 (storm surge of 0.6 m; wave heights of 
1-1.4 m, wave periods averaging 8 sec)(Wright et al. 1991). Sediment 
transport prior to the storm was bidirectional but was net offshore during 
the storm and was greater than that of fair-weather and moderate proc- 
esses by an order of one to two magnitudes. This net offshore transport of 
sediment occurred due to onshore winds, the resulting 0.6-m rise in mean 
water level, and associated downwelling and offshore-directed bottom 
mean Rows. However, this offshore sediment transport is much less than 
alongshore transport of sediment. 

During storm-dominated processes, suspended sediment concentrations 
averaged above 1.0 kg/m3 throughout the study and were up to 4.0 kg/m3 
associated with wave orbital velocities up to 1.0 m/sec (Wright et al. 
1991). During the height of the storm, suspended sediment concentrations 
were 4,000 mg/l at 14 cm above the bed; 1,400 mg/l at 34 cm above the 
bed; and 200mg/l at 106 cm above the bed. Although there was a relation- 
ship between suspended sediment concentration and wave orbital velocity, 
there was no relationship between suspended sediment concentration and 
bed shear stress. The effect of the bed shear stresses on the bed (in order 
of occurrence) included: 

a. Negligible changes in bed level response to the initial impulses of the 
storm including wind, mean and oscillatory currents, and suspended 
sediment concentration maxima. 

b. Gradual, but significant, scour of the bed of 5 cm during the storm 
phase that followed the initial impulse. 

c. Initiation of accretion of the bed during the second and stronger peak 
of the storm. 

d. Rapid accretion of the bed (15 cm) during the waning phases of the 
storm (this accretion, the authors note, may be a migrating bed form 
or offshore pulse-like migration of sediment). 

These bed level changes are believed to be associated with high-energy 
wind waves, which cause mixing and mobility of the upper sediment col- 
umn thus causing offshore-oriented sediment exchanges (Wright et al. 
1991). 
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Hayes (1967~)  studied Hurricanes Carla and Cindy in the Gulf of Mex- 
ico to examine the direct effects of storm processes and sediment trans- 
port. They recorded cross-shelf thicknesses and textures of Hurricane 
Carla beds to a depth of -35 m off Padre Island, Texas, along 50 km of 
coast. Hayes (1967~)  documented that sediment was transferred between 
the beach and the inner shelf in both the onshore and offshore directions. 
Before and during Hurricane Carla, mollusk shells, coral blocks, and other 
materials were transported onshore from water depths between 15 m and 
25 m and deposited on the beach. Storm surge seaward-directed turbidity 
currents carried the sediment offshore. After the storm passed, offshore- 
directed currents associated with hurricane-generated channels deposited 
a 1.25-cm to 3.75-cm layer of sand over preexisting mud out to depths of 
- 18 m. In addition, a graded layer of fine sand silt and clay (known as a 
turbidite) was deposited. 

Summary 

Green et al. (1988) document sediment transport changes according to 
different phases of the storm. During fair-weather conditions, although 
the waves were asymmetric in an onshore direction, the reversing tidal cur- 
rents and resulting mean flow controlled inner shelf sediment transport. 
During the early phase of the storm, sediment transport was controlled by 
wind-driven jet-like flow (mean flow) with an offshore component. Dur- 
ing the progression and towards the end of the storm, the waves were 
more organized and highly skewed in a onshore direction, thus enabling 
the highly skewed wave-orbital velocities to transport sediment in an on- 
shore direction against the mean flow. Storm flow was dominated by sus- 
pended load, which accounted for 75 percent of the sediment volume. 

In summarizing the findings of Green et al. (1988) and Wright et al. 
(1991), mean flows, interpreted to be related to tides, were dominant over 
incident waves in generating cross-shore sediment fluxes across the inner 
shelf. Cross-shore mean flows during fair-weather conditions were negli- 
gible, while these flows were greater than 20 cmlsec during storm condi- 
tions. Oscillatory flows associated with waves were 10 crnlsec and 
100 cmlsec during fair-weather and storm conditions, respectively. Sus- 
pended sediment concentrations 10 cm above the bed were less than 
0.1 kg/m3 and 1-2 kg/m3 during fair-weather and storm conditions, 
respectively. 

Storm Sedimentation Models 

Modeling of storm sedimentation is limited to the models of Dott and 
Bourgeois (1982); Walker (1984); Brenchley (1985); Duke (1985); and 
Duke, Arnott, and Cheel (1991), who base their models on the following 
parameters: 
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a. Textures in modern storm sediments. 

b. Geostrophic flow concepts. 

c. Results offlume experiments. 

d. Inferred storm-generated structures within ancient sandstones to 
construct cross-shelf facies sequences dependent upon water depth, 
sediment availability, and storm parameters such as return 
frequency and strength. 

Keen and Slingerland (1993a) note that while these models represent an 
important conceptual advance, they are qualitative and have not been 
tested against oceanographic data collected for that purpose, or compared 
to results of numerical experiments. 

Keen and Slingerland (1993b) have constructed a three-dimensional nu- 
merical prediction model to hindcast the oceanographic and sedimen- 
tologic responses of the western Gulf of Mexico to four historical tropical 
cyclones. 

The simulations of the numerical model by Keen and Slingerland 
(1 993b) indicate that: 

a. Onshore flow to the right of the storm track generally transports fine 
sediment landward. 

b. Offshore flow to the left of the storm track transports coarser 
sediments seaward. 

c. A right-to-left (facing the coast) alongshore flow transports finer 
sediment in deep water and coarser sediment in shallower water. 

The models of Keen and Slingerland (1993a,b) suggest that coastal geome- 
try is the controlling factor in determining sedimentation patterns, while 
in situ sediments are the main source of sediments to the inner shelf. 
Along the coast in front of each storm, the volume of sediment transported 
obliquely in a cross-shore direction is a function of the shelf gradient and 
coastal configuration. Steeper gradients constrain flow to a more long- 
shore pattern. Concave coastlines promote greater shoreface erosion be- 
cause of increased setup. 

Chapter 3 Evidence of Cross-Shore Sediment Transport 



4 Sedimentary Features1 
Stratigraphy of the 
Shelf 

Introduction 

Mechanisms of cross-shore sediment transport on the inner shelf 
greatly affect sedimentary features including morphological signatures 
such as surficial bed forms, and stratigraphy (internal structure) of the in- 
ner shelf. The first studies of inner shelf sedimentary features and strati- 
graphy characteristics were those of Agassiz (1888), Grabau (1913), and 
Johnson (19 19). Johnson (1  9 19), who developed the first model of conti- 
nental shelf sedimentary characteristics, stated that: 

a.  The shelf is a system in dynamic equilibrium both in terms of slope 
and grain parameters. 

b. Given a nearshore 'sediment source, grain size decreases in an 
offshore direction due to decreasing wave energy. 

Shepard (1932) stated that the shelf was composed of a mosaic of sedi- 
ment sizes and types rather than a uniform seaward-fining trend in grain 
size. He suggested that these sediments were deposited during periods of 
lower sea level, particularly during the Pleistocene Epoch. Emery (1952, 
1968) presented a classification of shelf sediments on a genetic basis con- 
sidering the following types of materials: 

a. Authigenic, or formed or generated in place (e.g. glauconite or 
phosphorite). 

b. Organic, or relating to a compound containing carbon as an essential 
component (e.g. foraminifera, shells). 

c. Residual, or relating to an accumulation of rock debris formed by 
weathering which remains in  place (e.g. residual clay). 
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d. Relict, or remnant from an earlier environment such as a beach or 
dune. 

e. Detrital material, or presently supplied from rivers, coastal erosion, 
and eolian or glacial activity. 

Emery (1952) stated that in most coastal environments, the nearshore zone 
is composed of modern detrital sediments, while the shelf is composed of 
relict sands. 

Curray (1964) stated that stratigraphy of the continental shelf is a func- 
tion of the following: 

a. Fluctuations in sea level. 

b. Rate of sediment input to the continental shelf. 

c. Sediment grain size and mineralogy. 

d. Rate of energy input. 

e. Rate of relative sea level change. 

f. Continental shelf slope. 

Curray (1964) found that the onshore (transgression)/offshore (regression) 
migration of the shoreline, and subsequent sediment dispersal and rate of 
net deposition/erosion of sediment on the continental shelf are functions 
of the rate of sea level rise (subsidence of the land) or  sea level fall (emer- 
gence of the land) (Figure 9). Migrations of the shoreline and deposition 
of sediment on the continental shelf are important in understanding the pa- 
leogeography, sources, environments, and deposition mechanisms of 
sediments. 

Examples of lnner Shelf Sedimentary Features 

There exist a wide range of sedimentary features on the inner shelf 
ranging in scale from linear shoals (also known as ridge and swale topog- 
raphy) (hundreds of meters) to individual bed forms (centimeters to 
meters). 

Large-scale sedimentary features 

The large-scale sedimentary morphology of the middle Atlantic Bight 
was first extensively documented during the Inner Continental Shelf Sedi- 
ment and Structure Program (ICONS) undertaken by the U.S. Army Corps 
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Figure 9. Relationship between rate of net sediment depositionlerosion and rate of sea 
level riselfall (after Curray (1964)) 

of Engineers in the mid-1960s. This program was undertaken to accom- 
plish the following: 

a. Identify continental shelf sand bodies for beach nourishment 
purposes. 

b. Garner a greater understanding of shelf sedimentation as it pertains 
to the supply of sand for beaches. 

c. Increase understanding of changes in coastal and shelf morphology, 
longshore sediment transport, inlet migration and stabilization, and 
navigation. 

d. Increase understanding of the geologic history of the continental 
shelf. 

Additional studies of the Middle Atlantic Bight of North America include 
Veatch and Smith (1939), Shepard (1963), Emery (1966), Uchupi (1968), 
and Duane et al. (1972). 
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ICONS helped to identify the larger framework of geomorphic sedimen- 
tary features on the Middle Atlantic Bight of North America, including the 
following (Figure 10): 

m Shdf Edga. Mid-Shelf 
Sand Ridges 

Deltas 

Figure 10. Morphology of the Middle Atlantic Bight (after Swift (1975)) 
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a. Broad, flat plateaus. 

b. Fluvial valleys and related deltas excavated during the Quaternary 
Period (from approximately 2 million ybp to the Recent (present) 
Period inclusive of the Pleistocene and Holocene Epochs)(Evernden 
et al. 1964, Pratt and Schlee 1969). 

c. Shoal and retreat massifs (landward migration of deltas during 
transgression [or rising sea level]). 

d. Terraces and scarps. 

e .  Cuestas. 

f. Sand ridges. 

Duane et al. (1972) summarized these studies and discussed both inner 
shelf-detached and shelf-attached shoals. Linear northeast-trending inner 
shelf-detached shoals trend from the shoreline at an angle between 5 deg 
and 25 deg, are located in water depths of up to -30 m, measure approxi- 
mately 25 to 500 m in length, have reliefs of up to 10 m, have side slopes 
of a few degrees, and extend for tens of kilometers. These sand bodies are 
composed of well-sorted medium- to coarse-grained sands and are similar 
in lithology to adjacent beaches. In some instances, clusters of shoals 
merge with the shoreline in depths as low as 3 m. 

Inner shelf-attached shoals are shoals that are landward of the wave 
base (about -8 m)(Duane et al. 1972)(although these features are located 
in the nearshore zone, they are not similar in nature to surf zone/nearshore 
bars). These shoals appear to form in response to the interaction of south- 
trending, shore-parallel, wind-generated currents with wave and storm- 
generated bottom currents during winter storms. Aggradation of crests 
occurs during storm waves, while degradation occurs during fair-weather 
waves. These shoals are believed to have formed during lower sea levels 
associated with the Wisconsin stage of glaciation (the most recent and far- 
thest south continental glaciation advancement approximately 21,500 ybp 
to 10,000 ybp during the Pleistocene Epoch) (Evernden et al. 1964, Pratt 
and Schlee 1969). The shoals are modified by present-day coastal proc- 
esses, as they are in equilibrium with shelf processes. If these shoals were 
not in equilibrium with present-day processes, they would erode and 
disappear. 

Field and Roy (1984) also document elongate, shore-parallel shoals on 
the lower inner shelf in southeast Australia. These bodies are 10-30 m 
thick and parallel the coast for 40 km. The upper parts of these sand bod- 
ies are composed of sand transported downslope from the upper inner 
shelf and surf zone, Surface sediments of ridges are well-sorted and 
coarser than surrounding sediments. No seaward fining trend exists. In- 
ternally, beds are parallel to the slope of the inner shelf and there is no evi- 
dence of cross- bedding, thus making it difficult to determine the exact 
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seaward sediment transport mechanisms responsible for the formation of 
these structures. Field and Roy (1984) indicate that the most plausible 
mechanism is the seaward transport of sediment during storm-induced 
downwelling currents. 

Cacchione et al. (1984), in a study associated with the Coastal Ocean 
Dynamics Experiment, have identified three types of sedimentary features 
of the Central California inner shelf up to 2 km from the coast in -65 m of 
water. These included: 

a. Rocky outcrops. 

b. Elongate depressions of low relief on the inner shelf slightly oblique 
or normal to the general trend of the isobaths. These depressions 
contain ripples (heights of 0.40 m; wavelengths of 1.7 m) believed 
to be formed by large-amplitude, long-period winter surface waves. 

c. Smooth areas of no perceptible relief, but covered with well-defined 
wave ripples (heights of 0.02-0.05 m, wavelengths of 0.20-0.30 m). 

The proposed generation mechanism of these features is storm-generated 
bottom currents associated with strong, storm-driven downwelling flows 
during late fall and winter, steered by underwater rock ledges which scour 
the surficial fine-grained sediment and expose the coarser-sand substrate 
in the depressions (Cacchione et al. 1984). 

Small-scale sedimentary features 

Bed form classification. Harms et al. (1975) presented a classification 
of bed forms in which bed form formation is a function of energy (depend- 
ent upon the energy source and water depth), and grain size, where a 
larger grain size effectively reduces the amount of energy affecting the 
bed (Table 4). The hierarchy of bed form formation by increasing energy 
includes ripples, megaripples, and sand waves. Within the ripple classifi- 
cation, a gradation exists from short-crested (0- to 20-cm wavelength), to 
medium-crested (20- to 40-cm wavelength), to large-crested (40- to 60-cm 
wavelength) ripples (Reineck and Singh 1986). Within the megaripple 
classification, a gradation exists from two-dimensional (straight-crested) 
megaripples, to three-dimensional or lunate (sinuous-crested) megarip- 
ples, to flat (plane) beds (Figures 11 and 12). 
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Figure 11. Gradation from two-dimensional to three-dimensional bed forms and flat beds 
with increasing flow strength (after Reineck and Singh (1986)) 

Formation and movement of inner shelf sedimentary features, primarily 
the smaller scale ripples, are primary methods of inner shelf cross-shore 
sediment transport. These bed forms are formed only during turbulent 
flow conditions (water flow in which the flow lines are confused and het- 
erogeneously mixed (Bates and Jackson 1984). These turbulent condi- 
tions are created by wave and related oscillatory motion, or tide-generated 
currents near the bottom which roll and creep sediment particles along the 
sediment-water interface (Reineck and Singh 1986). As sediment parti- 
cles continue to move from the trough to the crest on both sides, ripples 
eventually form. As velocity increases and greater amounts of sediment 

ierarchy of Bed Form Formation by Increasing Energy (after 
arms et al. (1975)) 
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Straight to sinuous 

Moderate (> 
30-40 cmls, < 
70-80 c ~ I s )  

Usually substantial 

Very small 

Straight to sinuous 

High (s 70-80 
cmls, may be 150 
c ~ / s )  

Small to 
substantial 



Two - Dimensional, Straight-Crested Dunes 

Three - Dimensional, Cuspote Dunes 

Figure 12. Two-dimensional and three-dimensional bed forms. Vortices and flow patterns 
are shown by arrows above the dunes (after Reineck and Singh (1986)) 
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are added to the ridge, ripple height continues to increase with velocity 
until a point where height decreases and length increases. 

Bedding theory. Bedding is defined as the signature of migration of a 
surficial bed form, or a morphologic feature having various systematic pat- 
terns of relief which is created by the conditions of flow at the dynamic 
interface between a body of cohesionless sediment particIes and a fluid 
(Davis 1983). Many authors have stated that bed form migration produces 
internal stratigraphic records in subsurface sediments. These records pro- 
vide clues to the processes, magnitudes, and directions of sediment trans- 
port that formed them (Nittrouer and Sternberg 1981, Swift et al. 1983). 
In other words, a specific process with a given magnitude and direction of 
energy will produce a unique subsurface stratigraphic record. The reader 
is referred to Reading (1978), Allen (1982), and Reineck and Singh (1986) 
for comprehensive discussions of stratigraphic signatures of migrating 
sedimentary features. 

Generally, there exist two classes of bedding; horizontal and cross- 
bedding. Horizontal bedding is characterized by parallel beds graded at 
any angle, usually resulting from flat bed sediment migration or the migra- 
tion of sediment where no bed forms occur. 

Cross-bedding, which is the most common type of bedding encoun- 
tered on the inner shelf, is defined as a single layer, or a single sedimenta- 
tion unit, consisting of laminae that are inclined in a direction similar to 
the principal surface of sedimentation. This sedimentation unit is sepa- 
rated from adjacent layers by a surface of erosion, nondeposition, or 
abrupt changes in character. 

Reineck and Singh (1986) indicate that different types of cross-bedding 
result from the migration of different types and sizes of bed forms. Two 
types of cross-bedding shown in Figure 13 include: 

a. Planar cross-bedding - cross-bedding in which bounding surfaces 
form more or less planar surfaces. These units are tabular or 
wedge-shaped. 

b. Trough cross-bedding - cross-bedding in which bounding surfaces 
are curved surfaces and the unit is trough-shaped. 

Clifton (1976) classifies internal sedimentary structures on the inner 
shelf into the following three classes: 

a. Planar parallel laminae (where lamina (singular) is a type of 
bedding defined as the thinnest recognizable layer in a sediment 
differing from other layers (commonly 0.05 to 0.10 mm thick)). 

b. Medium-scale ripple-foreset bedding (a foreset is a type of bedding 
thicker than lamina produced by the deposition of sediment on the 
downcurrent face of a bed form (Bates and Jackson 1984). 
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Figure 13. Block diagrams showing planar (a) and (b) trough cross-bedding as seen in 
horizontal, transverse, and longitudinal sections (after Reineck and Singh 
(1 986)) 
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c. Small-scale ripple-foreset bedding. 

These three classes of bed forms can form from either wave- or tidal- 
generated currents depending on the flow characteristics. 

Planar parallel laminae develop in shallow marine sands by: 

a .  Sheet flow caused by the consistent flow of sand over a flat bed 
during high-energy conditions (Davis 1983). 

b.  Migration of long-crested ripple forms accompanied by a slow rate of 
sediment accumulation. 

Deepwater sheet flow results from the high energy oscillatory flow of 
large long-period waves (Clifton 1976), and the currents usually associ- 
ated with geostrophic or downwelling currents. Shallow-water sheet flow 
results from intense wave activity close to the shoreline and may show evi- 
dence of shear sorting of particles of different size, density, or shape (less 
velocity is needed to form sheet flow in fine sand than in coarse sand). 
Other sedimentary structures associated with sheet flow include mica lami- 
nae, convex-up shells, and little to no bioturbation due to wave reworking. 

The second cause of planar parallel laminae is the migration of ripples 
accompanied with a slow rate of sediment accumulation known as slowly 
climbing ripple stratification (or the internal structure formed in noncohe- 
sive material from migration and simultaneous upward growth of long- 
crested ripples). Climbing ripple stratification can be produced by either 
currents or waves (Reineck and Singh 1986) of all periods, but only by 
medium- to long- period waves (8 to 12 sec) in deeper water. The sedi- 
mentary signature of the migration of ripple forms accompanied with a 
slow rate of sediment accumulation includes poorly defined climbing rip- 
ple foresets, shell lag deposits, concave up shells due to their tumbling 
over ripple crests, and bioturbation. 

Medium-scale ripple foreset bedding is characterized by 6-cm-thick 
foreset units in medium to coarse sand, which form due to the migration 
of cuspate (three-dimensional) megaripples or the migration of long- 
crested ripples if a rapid sedimentation rate is present. Lunate megaripple 
migration produces cross-bedding, while long-crested ripple migration pro- 
duces more tabular units (said of the shape of a sedimentary body whose 
widthlthickness ratio is greater than 50 to 1, but less than 1,000 to 1). The 
foresets of medium-scale foreset bedding are oriented onshore in the direc- 
tion of wave propagation suggesting the landward transport of sediment 
associated with orbital asymmetry. 

Small-scale ripple foreset bedding is the most common structure near 
the sediment water interface, but has a low preservation potential. This 
type of bedding is characterized by foreset units less than 6 cm thick and 
is produced by the migration of irregular asymmetrical wave ripples (to be 
described in the following section) or by the migration of small-scale 
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ripples during rapid sediment accumulation. Bedding planes dip onshore 
from wave-generated currents, while bedding associated with unidirec- 
tional currents dips either onshore or offshore (Clifton 1976). 

Ripple symmetry. Inner shelf ripples can be symmetrical or asymmet- 
rical. Symmetrical ripples have similar side slopes and are usually pro- 
duced by waves and associated bidirectional currents of near similar 
magnitudes (Reineck and Singh 1986). 

Asymmetrical ripples, or ripples with different side slopes, are formed 
by bidirectional currents of different magnitudes (Reineck and Singh 
1986). These bidirectional currents can be formed by both wave and tidal- 
generated currents. Asymmetrical wave ripples occur especially in the 
surf zone and shallow water under long period low waves, as the oscilla- 
tory flow of water particles tends not to occur in a closed orbit. Net trans- 
port of sediment occurs in the direction of wave propagation. Therefore, 
there is significant unidirectional sediment movement associated with 
asymmetrical wave ripples. Although both asymmetrical wave ripples and 
current ripples have unequal side slopes, asymmetrical ripples bifurcate 
while current ripples do not. Since the formation of bed forms on the 
inner shelf environment is dominated by wave activity, the following dis- 
cussion concerns wave ripples (ripples formed by wave-generated cur- 
rents, also known as oscillation ripples) rather than current ripples 
(ripples formed by tidal-generated currents). 

Sediment movement in symmetrical wave ripples is a function of wave 
orbitals at the water surface, which flatten towards the bottom eventually 
having only horizontal, and not vertical, movement. These ripples are es- 
sentially straight-crested, have pointed crests, rounded troughs and fre- 
quently show bifurcation. The occasional rounding of crests is a result of 
the reworking of ripples as the current field changes characteristics. The 
internal structure of wave symmetrical ripples is characterized by chev- 
rons indicating two directions of transport (chevron bedding slopes away 
from the crest and toward the trough of a ripple at equal angles). A more 
detailed discussion of internal structure characteristics of wave-ripple bed- 
ding can be found in Boersma (1970) and Reineck and Singh (1986). 

Clifton (1976), building on the work of Inman (1957) and Dingler 
(1974), stated that the prediction of symmetrical ripple size, which is gra- 
dational, is based on grain size, orbital velocity, and wave period. Three 
types of symmetrical ripples include (Figure 14): 

a .  Orbital ripples, which form under short-period waves and have ratios 
between orbital diameterlgrain diameter (d,/D) which are less than 
2,000 (where ripple wavelength is dependent upon the length of 
orbital diameter of the oscillatory current and is independent of 
grain size). 
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b.  Suborbital ripples, which form under longer period waves and have 
ddD ratios between 2,000 and 5,000 (wavelength increases with 
larger grain size but decreases with increasing orbital diameter). 

c. Anorbital ripples, which are associated with waves of very large 
orbital diameter and have ddD ratios greater than 5,000 
(wavelength depends on grain size and is independent of orbital 
diameter). 

Reversing ripples, which are considered asymmetrical, have do/h) ratios 
between 6,500 and 13,000 (Inman 1957). 

In comparing symmetrical and asymmetrical wave ripple size, Clifton 
(1976) states that symmetrical wave ripples form where maximum bottom 
orbital velocity is less than 1 cmlsec, while asymmetrical wave ripples 
form when maximum bottom orbital velocity is greater than 5 cmlsec. 
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Symmetrical wave ripples, which tend to form in deeper water, do not mi- 
grate and thus produce no stratigraphic record. Asymmetrical wave rip- 
ples tend to form in shallow water. In addition, symmetrical wave ripples 
have a poorer preservation potential than asymmetrical ripples, as asym- 
metrical wave ripples migrate. Komar (1974) indicates that ripple spacing 
of symmetrical wave ripples increases landward under short-period waves 
but decreases landward under longer-period waves. 

Reineck and Singh (1986) discuss the formation of ripples as a function 
of water depth and wave period. For wave periods of 2-4 sec, ripples 
form out to a water depth of -25 m. Symmetrical suborbital ripples are 
the dominant ripple type for these periods. No asymmetrical ripples form 
and there exists a limited occurrence of flat beds. For wave periods of 
5-8 sec, ripples form out to a water depth of -100 m and are dominated by 
suborbital symmetrical ripples with some anorbital ripples forming at 
higher velocities in fine- to medium-grained sand. Flat beds form under 
large wave conditions except in  coarse sand. For wave periods of 10 to 
15 sec, ripples form to a water depth of -300 m. In deep water, symmetri- 
cal suborbital ripples form in coarse sand while anorbital ripples form in 
fine sand. It is possible that lunate ripples and flat beds form in medium 
to coarse sand at higher velocities. Reineck and Singh (1986) also note 
that maximum velocity, velocity asymmetry, and grain size increase in a 
landward direction. 

Wave-formed sedimentary structures. Clifton (1976) presents a 
model concerning the origin and interrelationship of wave-formed sedi- 
mentary structures. Data collected from southern Oregon (high energy), 
southeast Spain (relatively low energy) and Willapa Bay, Washington (low 
energy), and previously collected data from Komar and Miller (1973, 
1974), Komar (1974) and Dingler (1974) form the basis for this concep- 
tual model. The processes responsible for these structures include: 

a. Wave parameters including height, period, maximum bottom orbital 
velocity, and change in maximum bottom orbital velocity. 

b. Fluid factors (density,viscosity). 

c. Flow factors (existing mean currents). 

d. Bottom configuration factors (water depth over all and local slope). 

e. Sediment factors (grain size diameter, sorting, density, and shape). 

f. Oscillatory currents just above the boundary layer 

g. Length of oscillatory water movement. 

h. Velocity asymmetry of oscillatory currents. 
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Arnott and Southard (1990), in a collinear oscillatory and combined 
flow water tunnel with a wide range of component speeds and an oscilla- 
tion period of 8.5 sec, have produced stability fields for wave-generated 
bed forms in very fine sand. Figure 15 shows that different types of bed 
forms and resulting internal stratigraphy are formed according to different 
wave oscillatory speeds, which are greater closer to shore and reduce in 
an offshore direction. 

Large 3D \,Ripples 

Unidirectional Speed (m/s) 

Figure 15. Stability fields for bed forms produced in very fine sand in collinear 
combined-flow water tunnel. Velocities were measured at 0.1 0 m above the 
bed. Note that "2D" considers a two-dimensional (straight-crested, which is 
usually representative of low energy conditions) bed form, while "3D" 
considers a three-dimensional (sinuous-crested, usually representative of 
high energy conditions) bed form (from Arnott and Southard (1990)) 
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lnner Shelf Stratigraphy 

Cross-shore stratigraphic sequences 

Numerous authors (see Appendix B, "Sedimentary Features and Strati- 
graphy References") have identified cross-shore sequences of sedimentary 
structures and resulting stratigraphy. Clifton (1976) documents the follow- 
ing typical sequence of sedimentary structures for the Oregon coast inner 
shelf resulting from wave-induced oscillatory flow (Figure 16), beginning 
offshore and moving landward: 

a. Inactive zone. 

b. Active asymmetric ripples. 

c. Long-crested asymmetric ripples. 

d. Irregular asymmetric ripples. 

e. Asymmetric cross-ripples. 

f. Megaripples. 

g. Flat bed. 

Similar sequences were also found in Australia by Boyd (1981). 

Land - 
Inactive M v e  Long-Crastd Irregular Cro3s-Ripples Lunate Megaripplea nat Beds 

Figure 16. Cross-shore sequence of structures commonly found off the coast of southern 
Oregon (after Clifton (1 976)) 
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Howard and Reineck (1972) defined a cross-shore sequence of internal 
stratigraphic structures. In addition to a seaward-fining sediment grain 
size trend, they found that physical sedimentary structures decrease and 
biogenic structures increase in a seaward direction due to increasing depth 
and position of the wave base. Howard and Reineck (1981) also examine 
and describe the primary physical sedimentary structures and compare a 
high-energy sequence at Port Hueneme, California, with a low energy, 
tide-dominated sequence at Sapelo Island, Georgia. 

Howard and Reineck (1981) describe three facies associated with the 
Port Hueneme, California, beach-to-offshore depositional stratigraphic se- 
quence. This sequence includes nearshore, transition, and offshore facies. 
The nearshore facies (+3.0-m to -9.0-m water depth)(inclusive of the fore- 
shore facies from +3.0 m to 0.0 m, and the inner shelf(shoreface) facies 
from 0.0 to -9.0 m) is composed primarily of parallel and cross-bedded ho- 
mogeneous sand, and small-scale wave ripple laminae, while bioturbation 
is only locally significant. Rounded rock-fragment pebbles are present 
both individually and as layers in the foreshore and more commonly in the 
swash zone. Alternating layers of coarse and fine sand are locally present. 
Heavy minerals are abundant throughout and enhance the expression of 
physical sedimentary structures. 

In sections of parallel laminated sand in the nearshore facies, the dip is 
very low (3 deg) and therefore dip directions cannot be specified from 
cores. Individual laminae pinch out at erosional contracts suggesting that 
these are wedged-shaped laminae sets. Thickness of individual parallel 
sets varies from 1 to 12 mm, with their average thickness being 1-2 mm. 
Cross-bedded sand is characterized by sets 10 to 30 cm thick with individ- 
ual laminae up to 2 cm thick. This sedimentary structure is found only in 
the nearshore facies, and within this facies, increases with decreasing 
water depth. Cross-bedding is most abundant in the vicinity of the mean 
low water line and is commonly associated with coarse sand, and alternat- 
ing sets of coarse and fine sand. Small-scale wave ripple laminae are re- 
stricted mainly to the nearshore facies. Ripples are present on the bottom, 
but were not preserved in cores. Bioturbation was practically nonexistent 
out to a water depth of -6.3 m as wave activity dominated the sedimentary 
sequence. Sand dollars were present in water depths from -6.5 to -8.7 m. 
No shells or shell fragments were found in the nearshore facies (Howard 
and Reineck 1981). 

The transition facies (-9.3-m to -18.7-m water depth) is a zone of fine 
sand and silty sand characterized by an increase in biogenic over physical 
structures that are commonly preserved as laminated-to-burrowed beds. 
This laminated- to-burrowed bed sequence is also described by Howard 
(1972), Howard and Reineck (1972), Golding and Bridges (1973), and 
Bourgeois (1980). Howard and Reineck (1981) state that wave-ripple bed- 
ding and parallel laminae are important structures in this facies. Hum- 
mocky cross-stratification laminae are defined as laminae which are both 
concave up (swales) and convex up (hummocks), possess many undulating 
erosion surfaces, and dip into the swales at angles of approximately 
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15 deg (to be described in detail in the next section). Hummocky cross- 
stratification laminae are probably the most persistent physical sedimen- 
tary structure in this facies, with small-scale oscillation-ripple laminae 
second in abundance. Cross-bedding, pebbles, and heavy-mineral laminae 
are not present. This facies contains stratigraphic structures of both the 
offshore and nearshore zones. The cross-shore transition between bio- 
genic and physical structures indicates fluctuation of wave energy. The 
onshore limit of this area is most likely normal wave base, while the off- 
shore limit is storm wave base. No shells or shell fragments were present 
in this facies (Howard and Reineck 1981). 

In the offshore facies at Port Hueneme (> -18-m water depth), the pri- 
mary texture is sandy silt and bioturbation is the dominant sedimentary 
structure (Howard and Reineck 1981). Energy decreases with increasing 
water depth, which results in increasing amounts of biogenic activity and 
a fining of grain size in an offshore direction. Biogenic processes affect 
up to 90-100 percent of this facies due to the following: 

a. Slow rates of sedimentation. 

b. Brief storm events. 

c. Long periods of relative quiescence. 

Remnant parallel laminae are the only physical sedimentary structures pre- 
sent. Shells and shell fragments are abundant. Direct or indirect effects 
of storms are rare. 

In comparing the stratigraphy of the inner shelf off Port Hueneme, Cali- 
fornia, and Sapelo Island, Georgia, Howard and Reineck (198 1) found sev- 
eral differences in the sedimentary sequences resulting from different 
wave characteristics (as the tidal range for the two areas is similar). A 
major difference between sedimentary sequences at the two sites was the 
water depth at which facies boundaries occur. At the Port Hueneme, Cali- 
fornia, site, the foreshore-inner shelf boundary is distinct as the parallel 
laminated sand of the foreshore facies is replaced by large-scale cross- 
bedding, and small-scale ripple laminae of the inner shelf facies. At the 
Sapelo Island, Georgia site, a distinction between the foreshorelinner shelf 
boundary could not be made because the parallel laminated sand of the 
foreshore facies continues as the dominant sedimentary structure well into 
the upper inner shelf facies. 

Thickness of the inner shelf facies was also different between the two 
sites. At Sapelo Island, the inner shelf is 250 m wide and 2 rn thick. The 
upper inner shelf is characterized by parallel laminated sand, and the 
lower inner shelf is characterized by small-scale ripple laminae. In con- 
trast, the Port Hueneme inner shelf is 300 m wide and 9 m thick. Large- 
scale cross- bedding as well as parallel laminated sand and small-scale 
ripple laminae occur on this inner shelf. 
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Additional differences between the two sites include the transition 
zone, which is between the -2.0- and -5.0-m water depths at Sapelo Island, 
and between the -9.3 and -18.7-m depths at Port Hueneme. Offshore 
facies are characterized by the presence of palimpsest sediments, defined 
as reworked sediments of the continental shelf, and occur seaward of 
-5.0 m at the Sapelo Island site, and seaward of -18.7 m at the Port Hue- 
neme site. In addition, storm units (parallel laminated to burrowed beds, 
separated by erosional contacts) are more clearly developed at the Port 
Hueneme site sequence. 

In a study of Topsail Island, North Carolina, Schwartz, Hobson, and 
Musialowski (198 1) collected data supporting the subdivision of the inner 
shelf into upper, middle, and lower inner shelfzones. These zones corre- 
spond to the inner shelf, transition zone, and offshore facies attributed to 
the Sapelo Island, Georgia, coast site by Howard and Reineck (1981). 
Each zone is related to a particular set of nearshore processes and result- 
ing stratigraphical characteristics. The upper inner shelfis dominated by 
surf conditions (including longshore currents) and maximum wave shoal- 
ing effects just prior to breaking. The approximate water depth range of 
the upper inner shelf is estimated to be between 0.0 m and -2.0 m based 
on sedimentary structures, sediment grain size characteristics, and 
changes in profile shape). Stratigraphically, the upper inner shelf is char- 
acterized by subhorizontal laminae and very low-angle, thinly laminated 
units, and by local occurrences of inverse textural grading. 

The middle inner sheZf(approximate water depth from -2.0 to -4.0 m), 
is dominated by relatively strong shoaling effects and coastal currents that 
produce significant downward scour and sediment transport during storm 
events. This facies is dominated by subhorizontal laminae, trough cross- 
bedding, low-angle foreset laminae, and minor bioturbation structures. 
The lower inner shelf, (water depth from -4.0 m to -6.5 m), is slightly to 
moderately affected by fair-weather waves, is stratigraphically dominated 
by subhorizontal to low-angle laminar bedding, small-scale trough or rip- 
ple bedding, and has moderate to locally abundant bioturbation. Nor- 
mally, graded beds, although sometimes poorly defined, occur throughout 
the inner shelf. 

Storm-related stratigraphy 

Numerous authors have identified storms as controlling sedimentation 
and stratigraphy of the inner shelf (Appendix B, "Significant (Storm) 
Event References"). Smith and Hopkins (1972) state that erosion of the 
continental shelf by severe storms ranges from a few millimeters to centi- 
meters; sediment is transported off the continental shelf into deeper 
water. Smith and Hopkins (1972) suggest that deposits are layered, and 
perhaps graded by storms as sands are covered by silt that settles out in 
suspension after the storms. 
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Storm-influenced bedding 

Types of storm-influenced bedding include the following: 

a.  Hummocky cross-stratification - defined as laminae which are both 
concave up (swales) and convex up (hummocks), possessing many 
undulating erosion surfaces, and dip into the swales at angles of 
approximately 15 deg (Brenchley 1985, 1989). The laminae are 
oriented 360 deg, indicating that current orientation fluctuates over 
an entire 360-deg circle. The beds, which thin over hummocks and 
thicken over swales, appear similar when viewed from two faces 
perpendicular to one another. Therefore, three-dimensional views 
are required to correctly identify hummocky cross-stratification 
(Brenchley 1985, 1989). 

b. Beds of laminated silt, usually only a few centimeters thick at most, 
which fine upwards. 

c. Beds similar in nature to turbidites (where turbidites are defined as a 
bedding sequence formed by a turbidity current or a bottom-flowing 
current laden with suspended sediment and possessing a density 
greater than that of the water which moves slowly down a 
subaqueous slope (Bates and Jackson 1984)). These beds show 
graded, parallel laminae or ripple drift lamination, commonly 
formed below the wave base. 

Hummocky cross-stratification, also known as truncated wave ripple lami- 
nae (Campbell 1966, 1971), is of utmost importance in the study of storm 
deposits on inner shelf sedimentationfstratigraphy patterns. Studies con- 
cerned with this subject include Campbell (1966, 1971), Harms (1975), 
Hamblin and Walker (1979), Bourgeois (1980), Allen (1982), Dott and 
Bourgeois (1982), Swift et al. (1983), Walker, Duke, and Leckie (1983), 
Brenchley (1985, 1989), Duke (1985, 1987, 1990), Greenwood and Sher- 
man (1984), Klein and Marsaglia (1987), Nottvedt and Kreisa (1987), 
Swift and Nummedal (1987), Arnott and Southard (1990), Higgs (1990), 
Southard and Boguchwal (1990), and Duke, Arnott, and Cheel(1991). 

Hummocky cross-stratification requires an increase in seaward sedi- 
ment transport, and entrainment and deposition of sand on the continental 
shelf above the wave base by storm-generated currents and waves 
(Brenchley 1985). This bedding is usually formed by accretion as laminae 
thicken over crests. However, some hummocky cross-stratification bed- 
ding is produced by erosion when sediment is  eroded from the hummocks 
and is deposited and thickens in the swales, Brenchley (1985) questions 
whether wave oscillatory currents or a combination of wave oscillatory 
and unidirectional currents are needed to produce hummocky 
cross-stratification. 
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Arnott and Southard (1990) state that meter-scale, isotropic hummocky 
cross-stratification is likely formed by large three-dimensional symmetri- 
cal wave ripples produced by purely oscillatory flows and very strongly 
oscillatory-dominant combined flows of storm waves. They documented 
that the sedimentary response of the inner shelf from pure oscillatory flow 
at low speeds was small symmetrical vortex ripples. At higher current ve- 
locities large, three-dimensional, round-crested bed forms with heights to 
20 cm and spacings of decimeters to meters resulted. 

Hummocky cross-stratification varies with distance from shore and 
water depth (Arnott and Southard 1990). As energy decreases in an off- 
shore direction, hummocky cross-stratification laminae tend to be less 
deeply incised and dip at a lower angle. At nearshore locations, there is a 
greater presence of wave ripples, and beds are lenticular (resulting from 
high energy) and tend to erode at the top. At offshore locations where the 
energy is less, the beds become tabular. In addition, wavelength and 
height of hummocks are likely to decrease in an offshore direction. 

Arnott and Southard (1990) found that superimposition of a steady cur- 
rent with oscillatory motion produced significant changes in bed state. 
Even a weak current caused bed forms to become asymmetric and mi- 
grate; most of the combined-flow bed forms contained downstream- 
dipping cross-stratification. Changes in the morphology of the ripples 
were profound as currents increased. Currents of only 1-5 cmlsec, super- 
imposed on oscillatory flows of 40-60 cmlsec, produced downstream- 
dipping low-angle hummocky cross-stratification. For currents exceeding 
13 cmlsec, hummocky cross-stratification occurred and dip angles were 
formed near the angle of response (similar in morphology to high-angle 
hummocky cross-stratification as described by Nottvedt and Kreisa 
(1987). At higher oscillatory speeds (60-80 cmlsec), any non-negligible 
current washed the ripples away, replacing them with a flat bed. How- 
ever, Arnott and Southard (1990) state that a core current exceeding 
95-110 cm/sec is needed to form large ripples exhibiting moderately steep 
internal laminae in very fine sand. 

Examples. Greenwood and Hale (1980), in a study at New Brunswick, 
Canada, using depth of disturbance rods, found that the depth of activity 
at a bar is proportional to storm intensity. The seaward side of the bar 
crest, which had maximum values of bed-level change due to large wave 
heights, asymmetric oscillatory motion, and rip currents, eroded up to 
35 cm. Meanwhile, the trough at the foot of the landward slope eroded up 
to 37 cm due to scour by longshore currents. Accretion of up to 12 cm oc- 
curred on the upper part of the landward slope in response to a decrease in 
wave height due to breaking waves and increased water depth. In addi- 
tion, accretion of up to 21 cm occurred on the upper seaward slope of the 
bar, thus steepening both slopes and producing a seaward displacement of 
the bar crest. Overall, the bar eroded during the storm, and sediment was 
transported in multiple directions through megaripple migration. How- 
ever, net transport of sediment was in an offshore direction. 
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Schwartz, Hobson, and Musialowski (1 98 1) distinguished between fair- 
weather and storm bedding features. They found that storm sequences are 
marked by: 

a. Beds with sharp lower contacts. 

b. Normal textural grading (fining of sediment grain size in an upward 
direction). 

c. Laminae bedding throughout or upward transition from laminated 
bedding at the base to bioturbation in the upper part of the sequence. 

Studies by Curray (1960), Hayes (1967c), and Morton (1981) as re- 
viewed by Nummedal and Snedden (1987) show that fine sand moves off- 
shore from the inner shelf during storms and hurricanes. Nummedal and 
Snedden (1987) summarize that once transported to the continental shelf, 
little sediment is returned by post-storm flow. The primary sediment 
source is the portion of the inner shelf between mlw and the break in slope 
onto the more gently dipping continental shelf. These sediments are rede- 
posited as thin-graded, centimeter-thick, fining-upward, sand bed se- 
quences with sharp erosional bases on an otherwise muddy shelf. 
Hummocky cross-stratification is present. Hayes (1967c), who studied in- 
ner shelf sedimentation caused by Hurricane Carla (September 1961) docu- 
mented that these beds have a sharp upper contact, suggesting that some 
erosion occurred after the Hurricane Carla deposition. The beds have a 
scoured sole-marked base and are floored by a coarse lag of pebbles or 
shell fragments. Hummocky cross-stratification is common. This sug- 
gests that little sand is returned onto the inner shelf and beach from the in- 
ner shelf after a hurricane. 

In measuring bed level changes during a storm, Green et al. (1988) 
noted that bed changes at the -8-m depth included 6 cm of accretion over 
4.5 days of low-energy flow associated with currents as measured with a 
digital sonar altimeter prior to the onset of the storm. During the initial 
phase of the storm, 5 cm of scour was followed by 15 cm of rapid accre- 
tion. This accretion was coincident with the organization of surface 
waves into long-period swell, and maximum accretion was coincident 
with the most highly skewed waves. Onshore sediment transport corre- 
lated strongly with erosion of the bed, and offshore transport with accre- 
tion of the bed. 

Gagan, Chivas, and Herczog (1990) showed that Cyclone Winifred 
(1 February 1986) produced a normally graded, mixed terrigenous- 
carbonate bed sequence 11 cm thick in water depths up to -43 m extending 
30 km offshore. Cross-shelf distribution of organic carbon in the sedi- 
ment indicated that suspended sediment transport was extensive and that 
the storm layer was the result of the following three sources: 

a. Landward transport of reworked, resuspended mid-shelf sediment. 
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b. Resuspension and settling of inner shelf sediment. 

c. Seaward transport of terrigenous sediment in freshwater plumes. 

By taking 15-cm cores, Gagan, Chivas, and Herczog (1990) show that on 
a shelf-wide scale, in the -20- to -40-m water depth, sediment was eroded 
to a depth of 6.9 cm, and in water depth less than -20 m, sediment was 
eroded to a depth of 5.1 cm. Particles finer than medium sand were 
eroded and transported out of the mid shelf. 

Gagan, Chivas, and Herczog (1990) found that at least 10-30 percent of 
inner shelf storm sediment is composed of mid-shelf mud, thus indicating 
the landward movement of fine material. In summary, Gagan, Chivas, and 
Herczog (1990) support other findings that significant storms are capable 
of sporadic but efficient cross-shelf transport of suspended sediment. 

Wright et al. (1991) and others (Swift et al. 1983; Niedoroda, Swift, 
and Hopkins 1985; Niedoroda, Swift, and Thorne 1989) concur with 
Gagan, Chivas, and Herczog (1990) that the inner shelf is dominated by 
storm flows, which produce a fining sequence of grain size in an offshore 
direction, and storm beds including hummocky cross-stratification and 
storm-graded bedding. 

Wright et al. (1991), using a digital sonar altimeter, also documented 
bed-level changes of 15 cm at 8 m due to a 'Northeaster' storm. This in- 
crease is inferred to be a result of offshore migration of sediment lobes 
possessing abrupt leading edges, which migrate well seaward of the -8-m 
depth contour. These lobes are indicative of energetic cross-shelf advec- 
tion, as opposed to gradual diffusion. 

Wright et al. (1991) documented the response of the bed primarily as a 
result of hydraulic roughness during different weather conditions. Bed re- 
sponse during fair-weather conditions was characterized by pronounced 
wave-induced ripples, low sediment mobility, and high apparent hydraulic 
roughness heights (up to 1 cm). During post-hurricane fair-weather condi- 
tions, the bed was mantled with redeposited fine sediment and exhibited 
subtle ripples surmounting irregular ridges and depressions. This mor- 
phology yielded the lowest hydraulic roughness of all four cases. 

During storm-dominated conditions (wave heights and periods of 3-6 m 
and 10-20 sec, respectively, and near-bottom wind-driven mean currents 
of 0.5 mls) while there were no ripples, a highly mobile plane bed was pre- 
sent. However, strong wave agitation and a thick wave boundary layer re- 
sulted in an effective hydraulic roughness moderately larger than that of 
the ripple-dominated normal fair-weather case. Skin friction and total bed 
stresses during the storm exceed those of fair-weather conditions by more 
than an order of magnitude. 
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Swell-dominated conditions created the greatest hydraulic roughness of 
all four cases. This was due to the existence of a thick wave boundary 
layer with subtle ripples on a partially armored bed. 

In studies of the ancient geologic rock record, Brenchley (1989) and 
Duke, Arnott, and Cheel (1991) state that hummocky cross-stratification is 
part of a storm bed sequence characterized by an eroded base with a grada- 
tional top, which includes the following activities (from bottom to top of 
the sequence) (Figure 17): 

a. Waves interact with a relatively weak coast-oblique bottom current to 
erode the muddy substrate. Simultaneously, shells and shell hash 
carve tool marks in the mud and are deposited in swales). 

b. Coastal sand, moving as bed and suspended load under combined 
wave and current bottom flow, is eventually transported offshore 
resulting in the formation of horizontal lamination to low-angle 
dipping sand (this also results in basal erosion). 

c. Formation of hummocky cross-stratification due to reworking of the 
bed by storm processes. 

SHORE-NORMAL 

BED RESPONSE 

Figure 17. Probable sequence of events producing hummocky cross-stratification on the 
inner shelf (after Duke, Arnott, and Cheel (1991)) 
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d. As storm processes wane, sand and mud accumulate and are 
deposited as parallel laminae on top as formed under oscillatory- 
dominant combined flow (much of it draping over low-relief 
scours), while megaripples which slowly form and migrate on the 
still-aggrading substrate may initially produce anisotropic 
hummocky cross-stratification (bedding properties are different in 
all directions). Much of the sand is reworked by waves as the 
bottom current subsides, thus resulting in strongly oscillatory- 
dominant combined flow and the formation of isotropic (properties 
are similar in all directions) hummocky cross-stratification. As 
storm wave motions decrease in speed, a reworked mantle of 
draping lamination and vortex ripples is formed. Later, the sand is 
buried by mud and often bioturbated (from Duke, Arnott, and Cheel 
(1991)). 
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5 Summary 

Nummedal and Snedden (1987) state that during storms and post-storm 
recovery, large quantities of sand move in cross-shore directions. Large 
quantities of this sediment may be lost from the beach and from the active 
profile, thus necessitating beach fill. Much is known about nearshore sedi- 
ment movement under shoaling waves (Komar 1976); precise documenta- 
tion of cyclic patterns of surf-zone change (Wright et al. 1979, Nummedal 
and Snedden 1987), and the well-studied effects of rip currents (Cook and 
Gorsline 1972, Wright and Short 1984). 

However, despite undergoing intense study by geologists and engineers 
for over a century, there are still many fundamental, unanswered questions 
about patterns, mechanisms, and rates of beach-shelf sediment inter- 
change. An extensive amount of field work concerning contrasting inner 
shelf environments is needed (particularly data from cross-shore arrays 
which provide simultaneous measurements at different depths of near- 
bottom flows, sediment fluxes, and bed responses). Wright (1987) 
believes that in determining cross-shore inner shelf sediment transport 
processes, attention should be placed on field studies and modeling the 
naturally occurring inner shelf environments. Wright (1987) believes that 
no one model (or concept) effectively describes inner shelf transport. 

Nummedal and Snedden (1987), Wright et al. (1991), and Pilkey (1993) 
contend that existing models of equilibrium profile development and cross- 
shore sediment transport are seriously inadequate. 

Pilkey et al. (1993) contend that present-day assumptions of the profile 
of equilibrium concept indicate the following: 

a. Sediment movement on the inner shelf is an exceedingly complex 
phenomenon driven by a wide range of wave, tidal, and gravity 
currents. 

b. The depth of closure does not exist, as evidence shows that large 
volumes of sand may frequently be moved beyond the depth of 
closure. These large volumes of sediment moved are often spread 
over such a large area that standard profiling methods cannot detect 
this movement. 
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c. The inner shelf is often not sand rich and in some areas is strongly 
influenced by the geological framework. 

d. The profile of equilibrium equation provides an average inner shelf 
profile cross section, but does not accurately predict equilibrium 
profiles at specific inner shelves. 

Present-day models concerning inner shelf cross-shore sediment trans- 
port and based on the profile of equilibrium equation (Pilkey et al. 1993) 
do not adequately describe nearshore sediment transport as they say inner 
shelves can be described and differentiated solely on the basis of sediment 
grain size and a broadly defined wave climate. However, these models do 
represent the most up-to-date estimation of inner shelf cross-shore sedi- 
ment transport and are particularly useful in that they allow an engineer or 
scientist to explore storm impact on a location using a general approxima- 
tion of the profile. 

Many problems must be understood before we can gain a reasonable 
understanding of inner shelf and nearshore equilibriddisequilibria and the 
associated rates of and directions of cross-shore sediment transport 
(Wright et al. 1991). A goal for the coastal engineering community should 
be "to devise a more universal conceptuaI framework capable of better 
accounting for inner shelf transport, erosion, and deposition in time and 
space" (Wright 1987). Accomplishing this goal would help to do the 
following: 

a. Garner a better understanding of the physical oceanography of the 
inner shelf, including the vertical segregation of flows and 
cross-shelf variations of these flows. 

b. On a morphodynamic perspective, study the bottom boundary layer 
processes that provide the connecting link between hydrodynamics 
and resulting morphologic change via sediment transport. 

c. Study the environmental end members (i.e. other sites) in order to 
create a comprehensive inner shelf morphodynamic model. 

d. Acquire more detailed time series data on near-bottom flow structure, 
sediment fluxes, bedform behavior, and substrate microstratigraphy. 
As their empirical base is expanded, so, too, theory and models 
should be expanded. 

e. More accurately predict ripple geometries and their applicability to 
mixed sediment size distributions and combined waves and currents. 

f. Create more realistic paradigms for shelf-nearshore equilibrium that 
take explicit account of the natural suite of near-bottom flows and 
of the fundamental roles played by time-varying bed 
micromorphology . 
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g. Caution users of any inner shelf models that they must be aware of 
the limitations of the models and of special conditions that may 
exist at their project sites. 

h. Commence an extensive field measurement and modelling effort not 
currently underway in North America (Wright 1987, Pilkey et al. 
1993). 
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Appendix A 

Bedding - the signature of a migration of a surficial bed form. 

Bed form - a morphologic feature having various systematic patterns of 
relief and created by the conditions of flow at the dynamic interface 
between a body of cohesionless sediment particles and a fluid. 

Climbing ripple stratification - The internal structure formed in 
noncohesive material from migration and simultaneous upward growth of 
long-crested ripples. 

Continental shelf- The gently sloping submerged edge of a continent, 
extending from the surf zone seaward to a depth of about 130 m, or the 
edge of the continental slope. The continental shelf is composed of two 
distinct zones, the inner and outer continental shelf. The shelf is 
characterized by an average slope of 0.1 deg. 

Continental shelf break - The seaward edge of the continental shelf 
where the bottom begins to descend at a greater angle as part of the 
continental slope. Average depth of the shelf break is 130 m. 

Continental slope - The submerged edge of a continent extending 
seaward of the continental shelf which is characterized by slopes of 3-6 
deg. 

Cross-bedding - A single layer, or a single sedimentation unit, 
consisting of laminae that are inclined in a direction similar to the 
principal surface of sedimentation. This sedimentation unit is separated 
from adjacent layers by a surface of erosion, nondeposition, or abrupt 
changes in character. 

Depth of closure - The point on the equilibrium profile beyond which 
there is no significant net offshore transport of sand even during storm 
conditions. 
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Equilibrium profile - The long-term profile which the ocean bed is 
assumed to conform to based on a particular wave climate and sediment 
characteristics. 

Foreset - A type of bedding thicker than lamina produced by the 
deposition of sediment on the downcurrent face of a bed form. 

Holocene - The Epoch from approximately 10,000 years before present 
(ybp) to the present, which follows the continental glaciations of the 
Pleistocene Epoch. 

Horizontal bedding - Bedding characterized by parallel beds graded at 
any angle, usually resulting from flat bed sediment migration or the 
migration of sediment where no bed forms occur. 

Hummocky cross stratification - Laminae which are both concave up 
(swales) and convex up (hummocks) possessing many undulating erosion 
surfaces, and dip into the swales at angles of approximately 15 deg. 

Inner shelf(inner continental shelf) - The inner part of the continental 
shelf, also known as the shoreface, extending from the seaward edge of 
the surf zone to the landward edge of outer continental shelf. This zone is 
characterized by a normal, strong agitation of the seafloor bed by waves. 
Slopes of this zone are on the order of 1:200. 

Lamina (pl. laminae) - The thinnest recognizable layer in a sediment or 
sedimentary rock differing from other layers in color, composition, or 
particle size. Commonly 0.05 to 1 .OO mm thick. 

Outer continental shelf- The outer continental shelf, the landward limit 
marking the depth of closure, is only periodically agitated by waves. 
Slopes of this zone are on the order of 1:2,000. 

Palimpsest sediments - Reworked sediments of the continental shelf. 

Planar cross-bedding - Cross-bedding in which bounding surfaces 
form more or less planar surfaces. These units are tabular or 
wedge-shaped. 

Pleistocene Epoch - The Epoch characterized by continental 
glaciations at North America from approximately 2 million years to 
10,000 ybp. 

Profile envelope (active) - The range of vertical migration of the 
profile due to coastal processes including waves and currents. 

Quaternary Period - The Period from approximately 2 million ybp zo 
the recent (present) inclusive of the Pleistocene and Holocene Epochs). 
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Sheet flow - the consistent flow of sand over a flat bed during high 
energy conditions. 

Shoreface - See inner shelf 

Surf zone - The region characterized by normal and strong agitation of 
the seafloor bed by the borelike translation of waves following wave 
breaking. 

Trough cross-bedding - Cross-bedding in which bounding surfaces are 
curved surfaces and the unit is trough-shaped. 

Turbulent flow conditions - water flow in which the flow lines are 
confused and heterogeneously mixed. 

Wisconsinan Stage - The most recent and farthest south continental 
glaciation advancement from approximately 21,500 ybp to 10,000 ybp 
during the Pleistocene Epoch. 
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Appendix B 
Bibliography with Respect to 
Topic 

This appendix is divided into 12 individual reference lists, each of 
which concerns a separate piece of evidence of cross-shore sediment 
transport on the inner shelf. 

Individual topics demonstrating evidence of cross-shore sediment 
transport on the inner shelf include Original Inner Shelf Studies (page 
B I), Sedimentary Features and Stratigraphy (page B2), Significant 
(Storm) Events (page B 1 I) ,  Sediment Transport (page B 14), Shelf Coastal 
Processes (page B25), Equilibrium Profile and Profile Adjustment (page 
B31), Depth of Closure (page B35), Field Research Facility (page B36), 
Geological Framework (page B39), Comprehensive Studies (page B42), 
Organic Burrowing (page B43), and Cross-Shore Sediment Transport 
Model Reference Lists ( page B44). 

Original Inner Shelf Study References 

Purpose 

A reference list of some of the original studies concerning cross-shore 
sediment transport on the inner shelf follows (subject matter of studies is 
also noted): 

a. Laboratory Studies 
Beach Erosion Board (1947) - Laboratory study of equilibrium 

beach profiles 
Inman and Bowen (1963) - Sediment transport by waves and currents 
Rector (1954) - Equilibrium beach profiles 

b. Processes/Hydrodynamics 
Arlman, Santema and Svasek (1958) - Movement of bottom 

sediment by currents and waves (with radiometric tracer) 

Appendix B Bibliography with Respect to Topic 



Bumpus (1965) - Residual drift along the northwestern United 
States continental shelf bottom waters 

Einstein and Li (1958) - Viscous sublayer along a smooth boundary 
Longuet-Higgins and Stewart (1964) - Radiation stress 
Manohar (1955) - Mechanisms of bottom sediment movement due to 

wave action 
Shepard and Inman (1950) - Nearshore water circulation related to 

bottom topography and wave refraction 

c. Equilibrium Beach Profiles 
Bascomb (195 1) - Relationship between sand size and beach face 

slope 
Beach Erosion Board (1947) - Laboratory study of equilibrium 

beach profiles 
Bruun (1953) - Forms of equilibrium coasts with a littoral drift 
Dietz (1963) - Wave base, marine equilibrium, and wave built 

terraces 
Eagleson, Glenne, and Dracug (1961) - Equilibrium profiles 

offshore 
Fenneman (1902) - Development of the profile of equilibrium 
Johnson (1959) - Supply and loss of sand to the coast 
Keulegan and Krumbein (1949) - Bottom slope configuration in 

shallow water and relation to geologic processes 
Rector (1954) - Equilibrium beach profiles 
Tanner (1958) - The equilibrium beach 

d. Sediment Transport 
Bruun (1962) - Sea level rise as a cause of storm erosion 
Caldwell (1956) - Wave action and sand wave migration off the 

California coast 
Cartwright and Stride (1958) - Sand waves on the near shelf 
Hall and Heron (1950) - Test of nourishment of the shore by 

offshore deposition of sand 
Inman (1953) - Areal and seasonal variation in beach and nearshore 

sands in southern California 
Inman and Risnak (1956) - Changes in sand level on beach and 

shelf in southern California 
Inman (1957) - Wave-generated ripples in nearshore sands 
Shepard (1950) - Beach cycles in southern California 
Shepard and Inman (1951) - Sand movement on the southern 

California shelf 
Vernon (1965) - Shelf sediment transport system 

e. Sediments 
Gorsline (1963) - Bottom sediments of the Atlantic shelf and slope 

of the southern United States 
Hayes (1967) - Relation between sediment type and coastal climate 

on the inner shelf 
Shepard (1932) - Sediments of the continental shelves 
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Uchupi (1963) - Sediments on the continental shelf off the eastern 
U.S. coast 

f. General (Comprehensive Texts) 
Johnson (1919). Shore processes and shoreline development 
Sverdrup, Johnson, and Fleming (1942). The oceans, their physics, 

chemistry, and general biology 

Sedimentary Features and Stratigraphy 
References 

Purpose 

A reference list addressing sedimentation patterns and resulting 
stratigraphic record of the inner shelf. This reference list also concerns 
stratigraphic relationships preserved in the ancient rock record. 

Agassiz, A. (1888). "Three cruises of the United States Coast and 
Geodetic Survey Blake, Harvard Collection, Museum of Comparitive 
Zoology Bulletin, 14. 

Allen, J. R. L. (1976). "A model for the interpretation of wave 
ripplemarks using their wavelength textural composition and shape," 
Journal of the Geological Society of America 136, 673-82. 

----A- . (1982). Sedimentary structures: Their character and 
physical basis. Elsevier, Amsterdam, The Netherlands, Vols 1 and 2. 

Allen, P. A. (1985). 6"Hummocky cross-stratification is not produced 
purely under progressive gravity waves," Nature 313, 562-64. 

Arnott, R. W. C., and Southard, J. B. (1990). "Exploratory flow-duct 
experiments on combined-flow bed configurations, and some 
implications for interpreting storm-event stratification," Journal of 
Sedimentary Petrology 60, 2 1 1 - 19. 

Ashley, G. M. (1990). "Classification of large-scale subaqueous 
bedforms: A new look at an old problem," Journal of Sedimentary 
Petrology 60, 160-72. 

Bernard, H. A., Le Blanc, R. J., and Major, C. F. (1962). "Recent and 
Pleistocene geology of southwest Texas," Houston Geology Society, 
175-224. 

Appendix €3 Bibliography with Respect to Topic 



Bourgeois, J. (1980). "A transgressive shelf sequence exhibiting 
hummocky stratification: The Cape Sebastian sandstone (Upper 
Cretaceous), southwestern Oregon," Journal of Sedimentary Petrology 
50, 681 -702. 

Boersma, J. R. (1970). "Distinguishing features of wave-ripple 
cross-stratification and morphology," Ph.D. diss., University of Utrecht. 

Brenchley, P. J. (1985). "Storm influenced sandstone beds," Modern 
Geology 9, 369-96. 

. (1989). "Storm sedimentation," Geology Today, 133-37. 

Brenchley, P. J., and Newall, G. (1982). "Storm-influenced inner-shelf 
sand lobes in the Caradoc (Ordovician) of Shropshire, England," 
Journal Sed. Petrology 52, 1257-69. 

Brown, P. J., Ehrlich, R., and Colquhoun, D.. J. (1980). "Origin of 
patterns of quartz sand types on the southeastern United States 
continental shelf and implications on contemporary shelf 
sedimentation-Fourier grain shape analysis," Journal of Sedimentary 
Petrology, Vol50, pp 1095-1 100. 

Cacchione, D. A., Drake, D. A., Grant, W. D., and Tate, G. B. (1984). 
"Rippled scour depressions on the inner Continental Shelf off Central 
California," Journal of Sedimentary Petrology 54, (4), 1280-91. 

Campbell, C. V. (1966). "Truncated wave-ripple laminae," Jour. Sed. 
Petrology 36, 825-28. 

Carlson, P. R., Molnia, B. F., Kittelson, S. C., and Hampson, J. C., Jr. 
(1977). "Distribution of bottom sediments on the continental shelf, 
northern Gulf of Alaska," U.S. Geological Survey Misc. Field Studies 
Map MF-876. 

Cartwright, D. E., and Stride, A. H. (1958). "Large sand waves near the 
edge of the continental shelf," Nature 18 1, 41. 

Cheel, R. J. (1991). "Grain fabric in hummocky cross-stratified storm 
beds: Genetic implications," Journal of Sedimentary Petrology 61, 
69-76. 

Cheel, R. J., and Leckie, D. A. (1992). "Coarse-grained storm beds of 
the Upper Cretaceous Chungo Member (Wapiabi Formation), southern 
Alberta, Canada," Journal of Sedimentary Petrology 62, (6), 933-45. 

Clifton, H. E. (1969). "Beach lamination: Nature and origin," Marine 
Geology 7, 553-59. 
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Murray, 1970 - Mississippi 
Smith (1977) 
Snedden, Nummedal, and Amos (1988) - Texas 
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Cross-Shore Sediment Transport References 

A reference list documenting references which give evidence of 
cross-shore sediment transport on the inner shelf (shelf-beach sediment 
exchange) is divided by regional area as follows: (The reference list 
entitled "Sediment Transport" in Appendix B addresses additional inner 
shelf sediment references.) 

North American Pacific 

Cacchione et al. (1987) - North Carolina 
Caldwell (1956) - California (Anaheim) 
Drake, Kolpack, and Fischer (1972) - California 
Drake, Cacchione, and Karl (1985) - California 
Inman (1953) - California (La Jolla) 
Inman (1957) - California 
Inman and Risnak (1956) - California (La Jolla) 
Inman, Swift, and Duane (1973) - Washington 
Kachel (1 980) - Washington 
Larsen (1982) - Washington 
Osborne and Yeh (1991) - California 
Osborne, Yeh, and Lu (1991) - California 
Pilkey and Field (1972) - Southeast United States 
Shepard (1950) - California 
Shepard and Inman (195 1) - California (La Jolla) 
Smith and Hopkins (1972) - Washington, Oregon 
Sternberg (1972) - Washington 
Sternberg and McManus (1972) - Washington 
Sternberg and Larsen (1976) - Washington 
U.S. Department of Commerce (1984) - California; Nearshore Sediment 

Transport Study 
Vernon (1965) - California 

North American Atlantic 

Bowen (1980) - Canada 
Butman, Noble, and Folger (1977) - Mid-Atlantic Coast 
Figueiredo, Sanders, and Swift (1982) - Central Atlantic Coast 
Gadd, Lavelle, and Swift (1978) - New York 
Green et al. (1988) - North Carolina (Duck) 
Greenwood and Mittler (1984) - Canada 
Hall and Herron (1950) - New Jersey 
Hubbard (1992) - U.S. Virgin Islands 
Kraus, Gingerich, and Rosati (1989) - North Carolina (Duck) 
Ludwick (1977) - Virginia 
McClennen (1973) - New Jersey 
Pearson and Riggs (1981) - North Carolina 
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Pilkey (1968) - Southeast Atlantic United States 
Pilkey and Field (1972) - Southeast Atlantic United States 
Reineck and Enos (1968) - Florida 
Richmond and Sallenger (1985) - North Carolina 
Stauble (1992) - North Carolina (Duck) 
Stauble, Garcia, and Kraus (1993) - Maryland 
Stubblefield, Permenter, and Swift (1977) - New York 
Swift et al. (1981) - New York, Maryland, Massachusetts (Nantucket) 
Swift, Thorne, and Oertel (1986) 
Twichell(1983) - Georges Bank 
Wright et al. (1986) 
Wright et al. (1991) - North Carolina (Duck) 
Vincent, Swift, and Hillard (1981) - New York 
Vincent, Young, and Swift (1982) - New York 
Vincent, Young, and Swift (1983) - New York 
Williams (1976) - New York 
Williams and Meisburger (1987) - New York 
Windo, and Gross (1989) - Southeast Atlantic Coast 

United States Gulf of Mexico 

Bernard, LeBlanc, and Major (1962) - Texas 
Brooks (1983) - Texas 
Dupre (1985) - Texas 
Hayes (1967a) - Texas 
Hayes (1967b) - Texas 
Hayes ( 1 9 6 7 ~ )  - Texas 
Hill and Hunter (1976) - Texas 
Keen, T.R., and Slingerland, R.L. (1993a) - Texas 
Keen, T.R., and Slingerland, R.L. (1993b) - Texas 
Morton (1981) - Texas, Louisiana 
Morton (1 98 8) 
Snedden, Nummedal, Amos, (1988) - Texas 

North American Great Lakes 

Osborne, P.D., and Greenwood, B. 1992 - Lake Huron 

North Sea 

Aagaard (1988) 
Arlman, Santema, and Svasek (1958) 
Morton (1 98 1) 
Swift et al. (1981) 
Winkelmolen and Veenstra (1980) 
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Other Locations 

Beydoun (1976) - Eastern Mediterranean Sea 
Boyd (198 1) - Southeast Australia 
Channon and Hamilton (1976) - Southwest England 
Cowell et al. (1983) - Southeast Australia 
Figueiredo, Sanders, and Swift (1982) - Brazil 
Gagan, Chivas, and Herczag (1990) - Southeast Australia 
Gao and Collins (1992) - China 
Hino, Yamashita, and Yoneyama (1981) - Japan 
Jago and Borusseau (1981) - France 
Kuo, Su, and Liu (1980) - Japan 
Kuo et al. (1987) - Japan 
Pae and Iwagaki (1985) - Japan 
Roy and Stephens (1980) - Southeast Australia 

SedimentationIStratigraphy References 

Numerous studies are concerned with stratigraphy and sedimentology 
of the nearshore shelf. A lot of these studies are from coastlines with 
different wave, tide, and morphologic settings. References concerning the 
sedimentationlstratigraphic characteristics of onshore-offshore sediment 
transport are broken down by region (The sedimentationlstratigraphy 
reference list of Appendix B contains additional references related to this 
subject.): 

North American Pacific 

Bernard, Le Blanc, and Major (1962) 
Cacchione et al. (1984) - California 
Clifton (1976) - Washington, Oregon 
Clifton, Hunter, and Phillips (1971) - Oregon 
Dingler (1974) - California 
Dingler and Inman (1977) - California 
Greenwood and Mittler (1984) - Canada 
Harms, Southard, and Walker (1982) - California 
Harms, Southard, and Walker (1982) - Oregon 
Howard and Reineck (1 98 1)  - Canada 
Hunter, Clifton, and Phillips (1979) - Oregon 
Inman (1 957) - California 
Komar, Neudeck, and Kulm (1972) - Oregon 
Komar and Miller (1975) 
Miller and Komar (1980) 
Nittrouer and Sternberg (1 98 1) - Washington 
Pilkey et al. (1972) - Oregon 

Appendix C Bibliography with Respect - Topic & Location 



North American Atlantic 

Brown, Ehrlich, and Colquhoun (1 980) - Southeast Atlantic Coast 
Davidson-Arnott and Greenwood (1974) - New Brunswick, California 
Davidson-Arnott and Greenwood (1976) - New Brunswick, California 
Duane et al. (1972) 
Eames (1983) - North Carolina 
Figueiredo et al. (198 1) 
Figueiredo, Sanders, and Swift (1982) 
Green et al. (1988) - North Carolina (Duck) 
Harms, Southard, and Walker (1982) - Georgia 
Howard and Reineck (1972) 
Gorsline (1963) - Eastern United States 
Greenwood and Hale (1980) - New Brunswick, California 
Greenwood and Osborne (1991) - New Brunswick, California 
Howard and Reineck (1972) - Georgia 
Howard and Reineck (1981) - Georgia 
Luternauer and Pilkey (1967) - North Carolina 
McBride and Moslow (199 1) 
Mearns, Hine, and Riggs (1988) - North Carolina 
Meisburger and Judge (1989) - North Carolina (Duck) 
Meisburger and Williams (1987) - North Carolina 
Riggs (1979) - North Carolina 
Riggs and O'Connor (1974) - North Carolina 
Schmittle (1982) 
Schwartz, Hobson, and Musialowski (198 1) - North Carolina (Topsail 

Beach) 
Shipp (1984) - New York 
Snyder, Hoffman and Riggs (in press) - North Carolina 
Snyder et al. (1993) - North Carolina 
Stubblefeld, Paramenter, and Swift (1977) 
Swift and Freeland (1978) - Mid-Atlantic Coast 
Swift, Freeland, and Young (1979) - Mid-Atlantic Coast 
Swift, Thorne, and Oertel (1986) - Mid-Atlantic Coast 
Uchupi (1963) - Eastern United States 
Uchupi (1968) - Eastern United States 
Uchupi (1970) - Eastern United States 
Wright et al. (1991) - North Carolina (Duck) 
Wright (1993) - North Carolina (Duck) 

United States Gulf of Mexico 

Gorsline (1963) - Southern United States 
Hill and Hunter (1976) 
Morton and Winker (1979) - Texas 
Nummedal and Snedden (1987) - Texas 
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North Sea 

Aagaard (1988) 
Reineck and Singh (1971) 
Harms, Southard, and Walker (1982) 

Other Locations 

Clifton (1976) - Southeast Spain 
Engstrom (1974) - Lake Superior 
Field et al. (1981) - Bering Sea 
Field and Roy (1984) - SE Australia 
Figueiredo, Sanders, and Swift (1982) - Brazil 
Flemming (1980) - South Africa 
Greenwood and Osborne (1991) - Georgian Bay 
Harms, Southard, and Walker (1982) - South Africa 
Hunter, Thor, and Swisher (1982) - Bering Sea 
Short (1984) - Australia 
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